
Introduction 
Sepsis does not progress or manifest in the 

same way in all patients due to the marked hetero-
geneity of septic patients and differences in patho-
physiological and immunological responses. 

Heterogeneity is a major feature of the sepsis 
patient population, and if one can stratify them 
into distinct groups (phenotypes), the latter will 
differ not only in pathophysiological patterns but 
also in responses to therapy. 

Specific characteristics such as sex, age, race, 
comorbidities, smoking, alcohol consumption, med-
ications, obesity, and nutritional status, as well as 

the source of infection, the type of infectious agent, 
the treatment administered, the nature of the un-
derlying disease, and the conditions that cause im-
mune dysfunction (liver cirrhosis, cancer, and au-
toimmune diseases) are obvious, but not exclusive, 
reasons for patient heterogeneity. Individual vari-
ability in the nature of the immune and patho-
physiological response accounts for the wide range 
of clinical variants of sepsis. 

Patients with sepsis were dying in the mid-
twentieth century, despite the discovery of penicillin 
and the absence of antibiotic resistance problems 
as we know them today. Numerous disparate ob-
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Summary 
The heterogeneity of sepsis patient populations remains an unresolved issue, hindering the development 

of effective therapeutic strategies and disease prognostic tools. Classification of diverse sepsis patients by 
molecular endotypes, together with multi-omics profiling, enables a more personalized treatment approach. 
Studying the immune response, genomic, metabolomic and proteomic profiles of sepsis patients will enable 
clinical phenotyping of this diverse population and the development of a precision approach to the diagnosis, 
prognosis and treatment of sepsis and septic shock. 

The aim of the review was to discuss sepsis subtypes as identified by profiling of patient genomic, 
metabolic, and proteomic data and present the latest approaches addressing the heterogeneity of sepsis pa-
tient populations, such as multi-omics endotyping and clinical phenotyping, which may aid in targeted ther-
apy and optimization of diagnosis and therapy. The keywords «sepsis omics», «sepsis endotypes», and «sepsis 
heterogeneity» were used to search PubMed databases without language restrictions. From over 300 sources, 
120 were selected for analysis as being most relevant to the aim of the review. More than half of these were 
published within the last five years. Criteria for excluding sources were their inconsistency with the aims of 
the review and their low informativeness.  

This review discusses the different types of immune responses, the impact of patient population heterogeneity 
on therapeutic interventions, and current perspectives on phenotyping sepsis patients. Despite the limitations 
of centralized collection of clinical information, cluster analysis of large data sets and the role of immune response 
genomics, metabolomics, and proteomics are beginning to dominate the prognosis and treatment of sepsis. Es-
tablishing links between all these elements and attempting clinical phenotyping of sepsis, including subtype 
analysis, appear to be critical in the search for personalized treatment approaches in the near future. 

Conclusion. Currently, the widely accepted goal in sepsis management is early detection and initiation of 
therapy to prevent the development of irreversible septic shock and multiorgan failure syndrome. Personalized 
genetic, metabolomic and proteomic profiling of the patient seems to be an intriguing and promising avenue 
in the search for new treatment strategies in sepsis. 
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servations from those years led an increasing number 
of researchers to conclude that the root of the prob-
lem was not only the pathogen itself, but also (per-
haps to a greater extent) the patient's inflammatory 
response, consistent with Osler's views. In the years 
that followed, this view of the pathophysiology of 
sepsis became dominant.  

Sepsis was defined in 1992 as a clinical syndrome 
that included both infection and systemic inflam-
matory response syndrome (SIRS) as measured by 
temperature, heart rate, respiratory rate, and leuko-
cytosis [1]. These criteria were so broad that almost 
any patient with an acute respiratory viral infection 
or, for example, pancreatitis met the definition of 
sepsis. However, it was the high mortality rate from 
sepsis during those years that forced the scientific 
community to act in this way, allowing any intensivist 
to suspect sepsis before the onset of septic shock 
and make an early clinical diagnosis. However, the 
low specificity of the SIRS diagnostic criteria resulted 
in an extremely large population of patients meeting 
the diagnostic criteria for sepsis, posing significant 
challenges in both clinical practice and research.  

In 2001, the updated definition of sepsis was 
published, which was almost identical to the previous 
one; it simply expanded the list of sepsis criteria [2]. 
Despite the introduction of another definition in 
2016, which emphasized that sepsis is a life-threat-
ening organ dysfunction caused by an unregulated 
host response to infection [3], it remains very difficult 
to describe this response in detail because we lack 
the tools to objectively assess whether a given or-
ganism's response to infection is normally regulated 
or not. Because immune responses are unique, an-
swering the question «What should be considered 
immune dysfunction?» can be challenging. Indeed, 
in this context, heterogeneity becomes a hallmark 
of sepsis [4]. 

 As a result, future studies of the efficacy of 
different therapeutic interventions in sepsis should 
use endo- and phenotyping to stratify sepsis patients 
in clinical trials and to develop treatment strategies 
that are more precisely targeted to specific endo- 
and phenotypes of sepsis. 

The primary objective of this review is to fa-
miliarize the reader with the stratification of different 
endotypes obtained using omics technologies (ge-
nomic, transcriptomic, proteomic, metabolomic, 
etc.) as well as the phenotyping of sepsis patients 
using large clinical datasets.  

The literature search was performed in the 
bibliographic database PubMed without language 
restrictions. The keywords «sepsis omics», «sepsis 
endotypes», and «sepsis heterogeneity» were used 
in the search queries to link the topics of omics re-
search and sepsis phenotyping. The analysis included 
120 sources that were most relevant to the main 
objective of the review.  

Criteria for excluding sources were irrelevance 
to the review objective and low informativeness. 
The current review included 6 comparative studies, 
3 prospective cohort studies, 17 observational studies, 
51 original studies, 6 commentaries, 20 reviews, 
1 meta-analysis, and results from 16 clinical trials. 
The source selection scheme is shown in Fig. 1. 

Genomics of the sepsis-related immune re-
sponse. Individual transcriptome variations during 
sepsis have been evaluated by various authors in 
several large cohorts based on a dysfunctional (im-
munosuppressive) endotype of the immune response 
to sepsis. Data from clinical and laboratory studies 
included peripheral blood leukocyte counts obtained 
within the first hours of admission to the intensive 
care unit in patients with probable infection. These 
studies used an unsupervised hierarchical clustering 
method for approximately 25,000 transcriptomic 
profiles across the genome (gene expression mi-
croarray and RNA sequencing). These complex 
methods, based on large amounts of genetic data, 
have enabled the identification of patterns among 
expressed genes that define molecular subgroups 
representing different abnormal conditions that are 
not necessarily associated with specific clinical out-
comes, but may be related to them. This approach 
can also identify clusters based on a patient's pre-
morbid status (age, comorbidities), stage and severity 
of disease, likelihood of mortality, and genetic pre-
disposition to severe sepsis. 

One of the first studies to use unsupervised 
hierarchical clustering to investigate subgroups of 
sepsis patients in the general ICU population was 
conducted in a cohort of children admitted with 
septic shock to pediatric ICUs in the United States [5]. 
The attempt by Wong et al. to develop a clinically 
feasible personalized medicine approach to pediatric 
septic shock resulted in the first genetic profiling of 
a heterogeneous group of septic shock patients. 
According to differential patterns of full genomic 
expression, 2 subclasses were defined using a spe-
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Fig. 1. Flow chart for searching and selecting papers for 
inclusion in the review.
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cially developed gene expression parameter. This 
method of patient categorization was prospectively 
analyzed in a separate cohort of patients: out of 
132 patients, 63 patients were classified as endotype 
A and 69 patients as endotype B. Initially, these two 
subclasses differed in age and leukocyte count dis-
tribution: patients with endotype A were significantly 
younger (mean age 1.4 years vs. 4.1 years for sub-
class B), and endotype A had a lower total leukocyte 
and neutrophil count than endotype B. The clinical 
phenotypes of the subtypes also differed: endotype 
A had a significantly higher 28-day mortality in the 
ICU (11% vs. 4% for endotype B), and endotype A 
had a more complicated course (27% vs. 11%) [5]. 
In a previous study by the same authors using the 
same patient sample, patients in the endotype A 
group showed the greatest disruption of immune 
defense pathways, specifically the suppression of 
key genes essential for the adaptive immune system, 
including those involved in glucocorticoid receptor 
pathways [6].  

In 2016, an updated perspective of leading in-
tensive care specialists on the phenomenon of im-
mune dysregulation in sepsis was published  [7]. 
Davenport et al. performed a transcriptomic analysis 
of peripheral blood leukocytes from patients ad-
mitted to the intensive care unit. Transcriptomic 
profiles of 265 patients admitted to 29 ICUs in the 
UK as part of the Genomic Advances in Sepsis 
(GAinS) study demonstrated two endotypes of the 
immune response to sepsis: SRS1 (41%) and SRS2 
(59%)  [8]. Patients with the SRS1 endotype had a 
higher 14-day mortality rate than those with the 
SRS2 endotype (22% vs. 10%). SRS1 was also asso-
ciated with relative immunosuppression, endotoxin 
tolerance, T-cell depletion, HLA class II suppression, 
and metabolic disturbances (shift from oxidative 
phosphorylation to glycolysis). Only seven of the 
more than 3000 differentially expressed genes ac-
curately predicted classification into a specific SRS 
endotype. The Davenport research group hypothe-
sized that in future studies, patients with a prospec-
tively defined SRS1 endotype might benefit from 
therapy that increases the pro-inflammatory re-
sponse in sepsis. The same investigators later repli-
cated this analytical approach to examine gene ex-
pression patterns in 117 patients with fecal peritonitis 
(FP) [9]. Again, two distinct groups were identified: 
SRS1(FP) — 46% and SRS2(FP) — 54%, with patients 
in the SRS1(FP) group having a higher 14-day mor-
tality rate (19% vs. 4%). The results were consistent 
with those found in the previous study, which in-
cluded patients with sepsis caused by community-
acquired pneumonia  [8], indicating an increased 
tolerance to LPS in the SRS1(FP) patient group. A 
simpler set (this time consisting of 6 genes) was 
obtained from over 1000 expressed genes that pre-
dicted classification into a particular SRS endotype. 

It should be noted that the patterns of SRS gene ex-
pression that distinguish the «immunosuppressive» 
SRS1/SRS1(FP) endotype in adults did not corre-
spond to the similar endotype A in children [5].  

Several other studies have shown that more 
than 80% of the transcriptomic response in sepsis 
is independent of the source or pathogen of the 
primary infection [9,10]. Furthermore, these patterns 
are similar to those observed in patients with trauma 
or burns [11], as well as in critically ill patients with 
non-infectious respiratory distress syndrome [12].  

In a prospective observational cohort study of 
306 patients admitted to two intensive care units in 
the Netherlands between January 1, 2011, and 
July  20, 2012, as part of the Molecular Diagnosis 
and Risk Stratification of Sepsis (MARS) project 
(discovery and first validation cohorts), and patients 
hospitalized with sepsis due to community-acquired 
pneumonia in 29 intensive care units in the United 
Kingdom (second validation cohort), whole-genome 
blood gene expression profiles were generated from 
samples collected on admission [13]. The obtained 
data were analyzed using unsupervised consensus 
clustering and machine learning software. Four 
molecular endotypes were found to be associated 
with 28-day mortality (P = 0.022): on day 28, mortality 
was highest in the Mars1 group (39%), followed by 
22% in the Mars2 group, 23% in the Mars3 group, 
and 33% in the Mars4 group [13]. 

The Mars1 endotype showed decreased ex-
pression of genes related to key innate and adaptive 
immune cell functions, including Toll-like receptors, 
NFκB1 signaling, antigen presentation, and T cell 
receptor signaling. However, an increased expression 
of trigger genes for specific metabolic pathways, 
including heme biosynthesis was seen in this en-
dotype. The Mars2 endotype showed increased ex-
pression of genes related to pattern recognition, 
cytokine signaling, cell growth, and motility, such 
as NF-κB, IL-6, inducible nitric oxide synthase, and 
N-formylmethionyl peptide signaling. The Mars4 
endotype was also associated with increased ex-
pression of genes involved in pattern recognition 
and cytokine interactions, specifically interferon 
signaling, RIG1-like receptors, and TREM1 signaling. 
The Mars3 endotype was primarily associated with 
increased expression of genes in the adaptive im-
mune pathway, such as T helper cells, NK cells, 
IL-4 signaling, and B cells. The combinations of the 
AHNAK and PDCD10 genes were selected as bio-
markers for this endotype [13]. To facilitate potential 
clinical use, for each endotype, specific biomarkers 
were used: BPGM and TAP2 reliably identified pa-
tients with the Mars1 endotype, GADD45A and 
PCGF5 with Mars2, and IFIT5 and GLTSCR2 with 
Mars4  [13]. The primary aim of our study was to 
identify sepsis endotypes and compare their clinical 
signs and survival outcomes. The study also identified 
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candidate biomarkers for further identification of 
specific sepsis endotypes in clinical practice [13]. 

Recent cost reductions in whole exome se-
quencing (WES) technologies have made genomic 
research more accessible. In one such study, re-
searchers hypothesized that certain variations in 
specific genes involved in the pathogenesis of syn-
dromes such as macrophage activation syndrome 
(MAS) and atypical hemolytic uremic syndrome 
(aHUS) would be more common in sepsis patients, 
resulting in marked inflammation. The researchers 
used ferritin levels above 7000 ng/ml as a screening 
marker and performed WES in six patients [14]. All 
patients inherited at least one abnormal (or likely 
abnormal) genomic variant previously identified 
in the literature as a cause of hereditary immunologic 
diseases. For example, three of six patients had the 
UNC13D variant, which causes abnormal natural 
killer (NK) cell degranulation and altered cytolytic 
activity. The autosomal recessive inheritance of this 
variant results in familial hemophagocytic lympho-
histiocytosis type 3. Three patients had a series of 
aHUS-associated mutations in complement pathway 
genes, including two in the CD46 gene, one in C3, 
and one in CFHR5, all of which were associated 
with nucleotide substitutions [14]. 

There are distinct patterns of gene expression 
among granulocyte and lymphocyte subpopulations, 
reflecting the specialized function of each immune 
cell  [15]. Because the transcriptome profile varies 
between immunocompetent cell types, gene ex-
pression patterns may reflect different leukocyte 
populations rather than intracellular differences in 
gene expression. These findings also need to be 
validated in larger cohorts from different countries, 
as ethnic background is a strong predictor of gene 
expression [16]. 

Currently, ncRNAs (non-coding RNAs) and 
miRNAs (microRNAs) are being investigated for 
their prognostic value in sepsis. A non-coding RNA 
molecule is one that is transcribed from DNA but 
not translated into proteins. miR is a small non-
coding RNA molecule that regulates post-transcrip-
tional gene expression. Huang et al. found that lnc-
MALAT1 (long non-coding transcript 1 associated 
with lung adenocarcinoma metastasis) and miR-
125a were elevated in septic patients compared to 
healthy controls, while in non-survivors they were 
positively correlated with APACHE II and SOFA 
scores and serum creatinine levels [17,18]. 

V. M. Pisarev et al. found that increased plasma 
levels of extracellular DNA (ecDNA) were associated 
with 30-day mortality in sepsis patients  [19]. In 
turn, ecDNA acts as a ligand for one of the toll-like 
receptors (TLR9). Patients with the TLR9 CC genotype 
had the highest levels of cfDNA compared to other 
genotypes. The C allele of the TLR9 genetic variant 
(s352162) has been associated with multiple organ 

failure and increased TNF-α production  [19,20]. 
The simultaneous use of markers such as cfDNA 
and the genetic marker TLR9 most accurately 
predicts the fatal outcome of ICU patients  [19]. 
Thus, in the future, targeted therapy using TLR9 re-
ceptor inhibitors could be developed as one of the 
personalized treatment approaches.  

In 2020, the results of a Russian prospective 
study on the prognostic potential of aquaporin 
AQP5 as a biomarker for the course and outcome 
of sepsis were published [21]. Among all ICU patients, 
the homozygous AA variant of AQP5 genotype was 
most frequent. Sepsis patients with AQP5 AC and 
CC genotypes had a higher survival rate than those 
with the AA variant. In non-abdominal sepsis, how-
ever, mortality was not affected by single nucleotide 
substitution (AQP5). Only in patients with abdominal 
sepsis was there a significant difference in survival 
between genotypes: patients with the AQP5 AA 
genotype had higher mortality than patients with 
the AC and CC genotypes. The authors concluded 
that the C allele predicts a better outcome in ab-
dominal sepsis [21]. The results of another Russian 
study on the relationship between sepsis severity 
and the prognostic significance of the aquaporin 4 
(AQP4) genetic variant were published in 2023 [22]. 
The study included patients from three intensive 
care units. The majority of patients carried the GG 
AQP4 genetic variant, while homozygous carriers 
of the minor T allele were rare. The frequency of 
septic shock was significantly lower in patients with 
the GT and TT genetic variants than in patients 
with the GG genotype [22]. Interestingly, when the 
frequency of septic shock was compared between 
patients in different ICUs, it was found that the 
protective effect of the T allele was not statistically 
significant for patients in ICU-1, contrary to the 
patients in ICU-2 and ICU-3 who had a higher fre-
quency of comorbidities and a higher SOFA score 
on admission [22]. Thus, the presence of the T allele 
in the 3' region of the AQP4 gene had a protective 
effect only in patients with severe multiple organ 
failure and comorbidities and was associated with 
a better course of sepsis in these patients. 

In 2021, a Russian study was conducted to 
evaluate the contribution of the angiotensin II re-
ceptor 1 gene (AGTR1) polymorphism to outcomes 
in patients with sepsis and various comorbidities [23]. 
In the patient cohort studied, CIRS and Charlson 
Scale scores were significantly associated with sepsis 
mortality. Among all patients, homozygotes with 
the TT AGTR1 genotype dominated, while homozy-
gotes with the AA AGTR1 genotype had the lowest 
frequency.  

There were no significant differences in co-
morbidity between patients with different AGTR1 
genotypes. No significant differences in mortality 
rates between the different AGTR1 variants were 
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found; however, patients with the TT genotype had 
a lower incidence of septic shock. In patients with 
cardiovascular comorbidities, carriers of the TA and 
AA variants had a higher mortality rate (16 of 16 
cases) than carriers of the TT variant (25 of 33 cas-
es) [23]. The TA and AA variants also had a higher 
risk of developing septic shock. The presence of 
the AGTR1 genotype determined the severity and 
outcome of sepsis in patients with type 2 diabetes: 
mortality was significantly lower with the TT variant 
compared to the TA and AA variants. When patients 
with severe cardiovascular disease and diabetes 
mellitus were combined into a single group, the 
mortality rate among carriers of the TT genetic 
variant was 69%, while carriers of the A allele had a 
mortality rate of 96%  [23]. The association of the 
AGTR1 polymorphism with disease progression and 
outcome in septic ICU patients with severe comor-
bidities may become an important prognostic in-
dicator in the future. 

The presented studies provide evidence for 
the existence of distinct categories of the body's 
immune response to infection in the context of 
sepsis and potential therapeutic targets, with a 
differential approach to interpreting the clinical 
picture of sepsis based on the expressed molecular 
pathways that distinguish immune response endo-
types in different patients [5, 8, 13, 15, 16, 24]. Fur-
thermore, each of the cited studies proposed a po-
tential «dimensionality reduction» of the multidi-
mensional data from whole genome expression 
analysis into manageable prognostic clusters that 
could be incorporated into a simpler test applicable 
at the point of care, thereby facilitating the translation 
of the presented basic research results into real 
clinical practice. 

Metabolomics of the immune response in 
sepsis. Epigenetic regulation of gene function has 
been identified as a key mechanism controlling 
myeloid cell function in sepsis patients. Transcrip-
tional regulation involves the organization of gene 
loci on chromatin into transcriptionally active or 
«silent» states [25]. Transcriptionally active euchro-
matin is accessible to transcription factors and 
polymerases, whereas transcriptionally «silent» het-
erochromatin is inaccessible and inhibits gene 
transcription. Histone modifications such as acety-
lation, methylation, ubiquitination and phospho-
rylation all affect chromatin activation. Thus, various 
cellular metabolites serve as cofactors for epigenetic 
enzymes that induce chromatin and DNA modifi-
cations, modulate gene transcription, and promote 
different functional programs in sepsis: im-
munoparalysis or excessive inflammation [26–29]. 
A specific example of such epigenetic regulation is 
the Warburg effect, a shift from oxidative phos-
phorylation to glycolysis that leads to succinate 
accumulation, which in turn is critical for increasing 

the stability of hypoxia-inducible factor 1α (HIF1α), 
a transcription factor that increases IL1b transcrip-
tion (which encodes IL-1β) [27]. 

Finally, in addition to the immune, genetic, 
and cellular regulatory pathways discussed above, 
a variety of other mechanisms influence the overall 
inflammatory response system in sepsis. These in-
clude neuroinflammation (which involves trans-
mission of a peripheral sensory signal via the afferent 
vagus nerve to the brainstem, stimulation of the 
efferent vagus nerve, and subsequent activation of 
the splenic nerve in the celiac plexus, which leads 
to the release of norepinephrine in the spleen and 
the secretion of acetylcholine by a subpopulation 
of CD4+ T lymphocytes [30] with acetylcholine in-
hibiting the release of proinflammatory cytokines 
by macrophages) and a shift in the acid-base balance 
of the internal environment towards acidosis [31].  

Several studies have investigated the 
metabolomic profiles of patients with sepsis. Schmer-
ler et al. used targeted metabolomics to identify 
molecules that distinguish sepsis from non-infectious 
SIRS. They used liquid chromatography-mass spec-
trometry (LC-MS) to analyze 186 metabolites found 
in 74 SIRS patients and 69 sepsis patients, including 
acylcarnitine, amino acids, biogenic amines, glyc-
erophospholipids, sphingolipids, and carbohydrates. 
In this study, acylcarnitine and glycerophospholipid 
activities were found to be significantly different in 
patients with sepsis compared to SIRS. Using these 
two markers, the researchers correctly identified 
SIRS and sepsis in 80% of patients [32].  

Another study found metabolic differences be-
tween healthy individuals, patients with SIRS, and 
patients with sepsis. Patients with sepsis had sig-
nificantly lower concentrations of lactitol dehydrate 
and S-phenyl-D-cysteine, but higher concentrations 
of S-(3-methylbutanoyl)dihydrolipoamide E and 
N-nonanoylglycine than patients with SIRS. This 
study also found that 2-phenylacetamide, dimethylly-
sine, glyceryl phosphoryl ethanolamine, and D-cys-
teine were associated with the severity of sepsis. In 
addition, the profiles of sepsis patients 48 hours 
before death showed a clear state of metabolic de-
rangement, with levels of metabolites such as 
S-(3-methylbutanoyl)dihydrolipoamide E, phos-
phatidylglycerol, glycerophosphocholine, and S-suc-
cinylglutathione significantly reduced (P � 0.05) [33]. 

The gut microbiota deserves special attention 
because it is thought to influence systemic immune 
responses by translocating microbial components 
from the gut into the bloodstream. The research of 
N.V. Beloborodova et al. contributes to our under-
standing of the role of the intestinal microbiota in 
normal and pathological conditions, including sep-
sis [34-37]. There are several microbial metabolites 
that may influence the body's response to infection 
in sepsis. For example, hydroxylated aromatic mi-
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crobial metabolites have been found to dominate 
the metabolic profile of serum phenolic metabolites 
in sepsis patients. These metabolites may affect 
neutrophil function by suppressing their activity, 
which may contribute significantly to the develop-
ment of immunosuppression. 

The regulatory mechanisms described above 
are not only the result of genetic and cellular regu-
lation of immune system responses to infectious 
agents (based on individual characteristics), but 
also of factors that can have a significant impact on 
these responses. 

Proteomics of the immune response in sepsis. 
Biological profiling of sepsis patients is based on the 
measurement of proteins in various biological sam-
ples, which is more widely accepted and feasible 
than genetic or metabolomic profiling. Each method 
for testing a biological sample has advantages and 
disadvantages. Plasma and serum samples are the 
most readily available for clinical evaluation. As a 
result, a considerable amount of information has al-
ready been gathered from studies that have attempted 
to classify sepsis using their analysis [38–50].  

One notable method that may provide a new 
way to categorize a heterogeneous group of septic 
patients is the use of molecular and protein bio-
markers to predict outcome in septic shock patients. 
This approach has been used to stratify the risk of 
pediatric septic shock using a previously validated 
risk score consisting of 5 plasma protein biomarkers 
(PERSevere)  [40] and their combination with 4 
genes, including DDIT4, HAL, PRC1, and ZWINT, 
which are directly linked to TP53 and are likely to 
be associated with adverse outcomes [41]. Parameters 
used to assess 28-day mortality risk showed improved 
prediction ability. Plasma biomarkers were associated 
with dysfunctional inflammation and cellular dam-
age, while genes were associated with the p53 
protein, a transcription factor that acts as a tumor 
suppressor: activated when DNA damage accumu-
lates, it causes the cell cycle arrest or induces apop-
tosis when cells are irreversibly damaged. 

The first proteomic analysis of serum from 
sepsis and septic shock patients was performed by 
A. Kalenka et al. [42]. This study compared the pro-
teomic profiles of survivors and non-survivors with 
the goal of identifying early differences in serum 
composition that might predict survival at day 28. 
Several differentially expressed proteins were iden-
tified, including complement factor Bb, α-1-B-gly-
coprotein, and clusterin  [42]. The Bb segment of 
factor B, a component of the alternative complement 
pathway, plays a key role in the body's initial defense 
against infection. Factor B is essential for the acti-
vation of this pathway, serves as a cofactor in anti-
body-dependent monocyte-mediated cytotoxicity, 
and enhances macrophage adhesion and plasmino-
gen activation  [51, 52]. The study found higher 

activity of these proteins in survivors compared to 
non-survivors. Meanwhile, α-1-B-glycoprotein — 
a member of the immunoglobulin superfamily and 
a well-known plasma protein with an unclear bio-
logical function — was elevated to a greater extent 
in non-survivors. Haptoglobin, an acute-phase pro-
tein with molecular heterogeneity resulting from 
genetic polymorphism, is elevated during inflam-
mation, infection, and cancer, making it a biomarker 
for several diseases [53, 54]. There are two common 
haptoglobin alleles, Hp1 and Hp2. Homozygous 
individuals for these alleles express Hp 1-1 and 
Hp 2-2, respectively, whereas heterozygotes express 
Hp 2-1 [55]. Notably, Hp 1-1 has greater antioxidant 
activity compared to Hp 2-2 [56]. One study inves-
tigated the effects of haptoglobin isolated from 
healthy individuals with the Hp 1-1 phenotype on 
cytokine production by lipopolysaccharide 
(LPS)-stimulated monocytes. In vitro results showed 
that haptoglobin inhibited the release of TNF-α, 
IL-10 and IL-12 from LPS-stimulated human mono-
cytes, but did not significantly affect IL-6 or IL-8 
levels. In vivo models further confirmed the potent 
anti-endotoxic properties of haptoglobin. The au-
thors suggested that haptoglobin acts as a selective 
modulator of inflammation by preventing excessive 
production of proinflammatory cytokines. In par-
ticular, inhibition of IL-12 release was proposed to 
promote a T helper type 2-dominant environment. 
Because of its anti-endotoxic effects, haptoglobin 
is considered a potential therapeutic agent for in-
flammation  [57]. Sepsis survivors showed a more 
pronounced upregulation of haptoglobin, possibly 
reflecting a stronger immune response. Clusterin 
activity was also increased in survivors, with ex-
pression dependent on specific factors (26.5 and 
14.9) [42]. Clusterin is thought to play a role in the 
clearance of toxic substances through its ability to 
bind unfolded proteins, cellular debris, and immune 
complexes [58].  

In a prospective observational study, M. S. Raju 
et al. analyzed changes in the serum proteome 
from early to late stages of sepsis in survivors com-
pared to non-survivors [43]. The study identified 
differences in the levels of several proteins, including 
haptoglobin (Hp), transthyretin (TTR), orosomucoid 
glycoprotein  1/α1-acid glycoprotein (ORM1),  
α1-antitrypsin (A1AT), serum amyloid A (SAA), 
and S100A9. These proteins showed distinct ex-
pression patterns between survivors and non-sur-
vivors, particularly during the early stages of sepsis. 
The results highlight significant differences in the 
proteome of survivors and non-survivors, suggesting 
that dysregulation of the inflammatory response 
may be a key factor contributing to mortality in 
sepsis [43]. 

N. K. Sharma et al. compared the proteomic 
profiles of sepsis patients with community-acquired 
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pneumonia to those of healthy volunteers of the 
same age and sex. Bioinformatic analysis of differ-
entially expressed proteins in sepsis patients revealed 
changes in proteins involved in cytoskeleton and 
cell motility, lipid metabolism, immune response, 
and other processes [44]. 

A separate plasma proteomics study of sepsis 
patients with hospital-acquired pneumonia identified 
dysregulated lipid metabolism as a key abnormality. 
The study found lower expression of PON1 and 
apolipoproteins (ApoA1, ApoC, and ApoE) associated 
with HDL and higher expression of Hp and 
SAA1/SAA2. A validation study found lower plasma 
levels of total cholesterol, HDL-C, LDL-C, non-HDL 
cholesterol, apolipoproteins (ApoA1 and ApoB100), 
and PON1 in patients with hospital-acquired pneu-
monia. These findings are consistent with previous 
research highlighting the importance of lipid me-
tabolism in the pathogenesis of sepsis [45].  

L. Su et al. used proteomic analysis to identify 
34 differentially expressed urinary proteins in pa-
tients with sepsis and systemic inflammatory re-
sponse syndrome (SIRS) using iTRAQ (isobaric tags 
for relative and absolute quantitation) labeling and 
2D-LC-MS/MS. Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analy-
ses revealed that these proteins are involved in in-
flammation, immune response and cytoskeletal 
organization. A protein-protein interaction network 
identified five specific proteins: cadherin-1 (involved 
in actin cytoskeleton remodeling), Hp (with anti-
inflammatory properties), complement compo-
nent 3, SERPINA1 (with pro-inflammatory activity), 
and ceruloplasmin (which provides antioxidant and 
anti-inflammatory protection) [46]. 

The same research group published the results 
of another study in which proteomic and bioinfor-
matic analyses of urine from sepsis patients with 
different outcomes (survivors vs. non-survivors) re-
vealed significant differences in protein expression. 
Five proteins (SELENBP-1, HSPG-2, A-1-BG, HPR, 
and LCN) were upregulated, while two (LAMP-1 
and DPP-4) were downregulated in non-survivors. 
Three previously unknown differentially expressed 
proteins (LAMP-1, SBP-1, and HSPG-2) were vali-
dated by immunoblotting. LAMP-1 expression was 
significantly lower in non-survivors, whereas SBP-
1 and HSPG-2 levels were similar between survivors 
and non-survivors. These findings suggest that uri-
nary LAMP-1 levels may be used as a prognostic 
marker for sepsis outcome [47]. 

Inflammation-induced blood coagulation am-
plifies the inflammatory response, resulting in a 
positive feedback loop [59]. Neutrophils, monocytes, 
macrophages, platelets, and other inflammatory 
cells play important roles in the pathogenesis of 
sepsis. Platelets, as anucleated cellular fragments, 
are particularly well suited for proteomic analysis 

to detect protein changes in sepsis. Liu and col-
leagues used 2-DE (two-dimensional electrophore-
sis) and MALDI-TOF-MS (matrix-assisted laser des-
orption/ionization time-of-flight mass spectrometry) 
to identify proteins differentially expressed in 
platelets from sepsis patients versus healthy controls. 
The study found increased expression of five platelet 
proteins in sepsis patients: EFCAB7 (calcium ion 
binding), actin (cytoskeletal protein), IL-1β (cy-
tokine), GPIX (membrane receptor), and GPIIb (in-
tegrin). These proteins are involved in inflammatory 
response and coagulation activation, highlighting 
the critical role of platelets in sepsis-induced in-
flammation and coagulation [48].  

H. Zhang et al. used iTRAQ-based quantitative 
proteomic analysis to compare changes in the 
monocyte membrane proteome before and after 
LPS exposure. A total of 1,651 proteins were identified, 
of which 53.6% were membrane proteins. Subcellular 
analysis revealed that more than 90% of mitochon-
drial membrane-associated proteins were signifi-
cantly downregulated. This finding suggests that 
mitochondria may be a primary target of bacterial 
infection in sepsis [49].  

P. M. De Azambuja Rodrigues et al. used LC-
MS/MS to detect monocyte proteins in patients 
with septic shock. Downregulated proteins in sepsis 
include those involved in oxidative phosphorylation 
and the Krebs cycle (ATP5C1, DLST, ETFB, NDUFA11, 
NDUFA2, NDUFS7, NDUFS8, PDK3, PDP1, PDPR, 
RXRA, SUCLG2, TACO1, and UQCRQ), β-oxidation 
of fatty acids (ACADM, DECR1, PCCA, and PCCB), 
and the interferon signaling pathway (EIF2AK2, 
EIF4A3, EIF4E2, HLA-DPA1, HLA-DQA2, HLA-DRA, 
HLA-DRB1, IFIT1, MX1, NUP35, OAS3, PSMB8, 
and UBE2L6), as well as the MHC II antigen pres-
entation pathway (CD74, CTSH, DCTN3, DYNC1LI2, 
HLA-DMA, HLA-DMB, HLA-DPA1, HLA-DQA2, 
HLA-DRA, HLA-DRB1, KIF2A, and OSBPL1A). Gly-
colysis-associated proteins (enzymes PGK1, ALDOA, 
ALDOC, GADPH, PKLR, GPI, and LDHA) were found 
to be upregulated. These proteomic findings suggest 
significant disturbances in monocyte energy me-
tabolism in septic shock patients [50]. 

In a study of brain autopsies of patients who 
died from sepsis, the absence of occludin expression 
in the brain microvascular endothelium was asso-
ciated with more severe disease progression. Oc-
cludin is an essential integral protein for tight junc-
tions in endothelial cells. Erikson and colleagues 
found that endotoxin and pro-inflammatory cy-
tokines significantly reduced occludin expression 
in vitro in a human brain vascular endothelium 
model  [60]. Thus, blood occludin levels may be a 
promising biomarker for predicting blood-brain 
barrier (BBB) damage in sepsis [18]. 

The role of various cluster of 
differentiation  (CD) receptors as prognostic bio-
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markers is also being investigated. For example, in 
a study by W.-P. Yin et al., nCD64 combined with 
SOFA score predicted 28-day mortality more accu-
rately than procalcitonin measurement and SOFA 
score  [61]. Resistin and myeloperoxidase (MPO) 
levels are strongly associated with the development 
of multiorgan failure. A. Bonaventura et al. found 
that elevated plasma concentrations of resistin and 
MPO from the first day of sepsis were associated 
with the development of organ dysfunction de 
novo. However, only MPO elevation from day 1 
predicted 90-day mortality in sepsis [62]. 

C. Cao et al. [63],  and B. J. Anderson et al. [65] 
performed studies on the prognostic significance 
of specific soluble receptors. According to a meta-
analysis of 2,418 patients by C. Cao et al., serum 
sTREM-1 (soluble triggering receptor expressed on 
myeloid cells-1) had moderate specificity for iden-
tifying septic patients. However, when combined 
with other clinical parameters, it was more predictive 
of sepsis-related mortality than clinical parameters 
alone [64]. In a multicenter prospective cohort study 
by Anderson et al., an sTNFR1 (soluble tumor necrosis 
factor receptor-1) concentration � 8,861 pg/mL pre-
dicted 30-day mortality. 

For the first time, the molecular dynamic pro-
files of serum exosomes and their potential role in 
the development of sepsis were investigated in 
2022 [66]. A multi-omics analysis revealed that the 
onset of the «cytokine storm» is closely associated 
with circulating exosomes in the serum of sepsis 
patients. Specifically, mRNAs (messenger RNAs) in 
serum exosomes of sepsis patients were associated 
with cytokine synthesis and secretion. Pre-admin-
istration of serum exosomes to septic mice reduced 
TNF-α and IL-6 mRNA expression in multiple organs, 
resulting in organ protection. This finding supported 
the authors' previous study, which found that exo-
somes isolated from the serum of LPS-induced 
mice significantly reduced inflammation and im-
proved survival in CLP mice (a septic model involving 
cecal ligation and puncture) [67].  

Furthermore, exosomes from sepsis patients 
were found to be associated with complement and 
coagulation cascades, containing proteins from 
both the classical and alternative complement path-
ways [66]. This study also demonstrated the role of 
serum exosomes in modulating the immune re-
sponse in sepsis by regulating specific vitamin me-
tabolism pathways. 

Several studies on increased intestinal per-
meability in sepsis found elevated levels of zonulin, 
I-FABP (intestinal fatty acid binding protein) and 
the D-isomer of lactic acid.  

Taken together, metabolomic and proteomic 
approaches to sepsis provide a plausible framework 
for describing the biological pathways leading to 
adverse outcomes. 

Clinical phenotyping of sepsis. Clinical phe-
notyping is required to identify specific groups of 
patients who may benefit from targeted interven-
tions. Several approaches to phenotyping sepsis 
patients in the ICU have been proposed, including 
phenotyping based on temperature trends [70–85], 
hemodynamic characteristics [86–90], response to 
fluid therapy (in septic shock) [91–95], ICU outcome 
(favorable or fatal) [96–101], and characteristics of 
multiple organ dysfunction  [91, 102–109], often 
using artificial intelligence and machine learning.  

The key findings of these studies are discussed 
below.  

In recent years, attempts have been made to 
classify sepsis based on body temperature param-
eters. According to research in this area, hypothermia 
(or absence of fever) in sepsis patients is independ-
ently associated with higher mortality [70, 72, 73]. 
A 2017 meta-analysis found that fever in septic pa-
tients is a protective factor that reduces mortality 
compared to normothermia [71]. A Russian retro-
spective study found that hypothermia in sepsis 
patients was associated with more severe arterial 
hypotension, acidosis, and increased INR [85].  

This supports the idea that therapeutic hyper-
thermia in patients with hypothermia may improve 
sepsis survival. Several clinical trials have found an 
association between improved outcomes and warm-
ing of hypothermic sepsis patients [83, 84]. However, 
the study by A. M. Drewry et al. [83] has a significant 
limitation that prevents its findings from being 
directly translated into routine clinical practice. 
Specifically, almost twice as many patients in the 
hyperthermia group tested positive for pathogens 
susceptible to empirically prescribed antibiotics. 
Honore et al. pointed out this limitation in a letter 
to the editor of Critical Care Medicine [110].  

Before discussing the results of the following 
sepsis phenotyping studies, it is necessary to briefly 
explain machine learning and cluster analysis, which 
serve as the methodological basis for many of these 
investigations.  

In recent years, artificial intelligence (AI) has 
been increasingly applied in medicine. The basic 
idea behind AI, particularly machine learning in 
biomedicine, is to train an information system on 
large data sets (clinical, laboratory, imaging, etc.) 
to recognize and extract specific patterns. This 
allows for the grouping and subsequent analysis of 
these patterns.The next step in this process is cluster 
analysis.  

Cluster analysis quantifies the similarities 
among patients in a heterogeneous population. 
This method generates groups of patients (essentially 
representing different phenotypes) without relying 
on predetermined hypotheses  [111]. However, a 
limitation of cluster analysis is the difficulty in de-
termining the optimal number of data clusters. 
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Group-based modeling is an extension of cluster 
analysis that identifies groups of patients who 
exhibit similar trends with respect to a particular 
variable of interest [112].  

A study by S.  V. Bhavani et al. used group-
based modeling to identify sepsis subphenotypes 
based on temperature trend patterns. Four distinct 
subphenotypes were identified: normothermic, hy-
perinflammatory («hyperthermic, slow resolvers»), 
hypoinflammatory («hypothermic»), and a balanced 
inflammatory subphenotype («hyperthermic, fast 
resolvers») — the latter being associated with the 
lowest mortality rate [74]. The same research group 
validated their findings in a separate retrospective 
study that identified four similar phenotypes in 
COVID-19 patients [78].  

Hemodynamic characteristics in sepsis and 
septic shock, as shown in recent studies, may also 
help to address the clinical heterogeneity of sepsis 
patient populations.  

The introduction of continuous hemodynamic 
monitoring in routine ICU practice has made it 
possible to define different phenotypes based on 
hemodynamic profiles.  

In a study by R. M. Nowak et al., cluster analysis 
of invasive hemodynamic monitoring data from 
127 patients identified three phenotypes with distinct 
hemodynamic profiles:  

• Phenotype I (56.7%): High cardiac index (CI) 
and normal systemic vascular resistance index (SVRI).  

• Phenotype II (39.4%): Low CI and elevated 
SVRI.  

• Phenotype III (3.9%): Very low CI and very 
high SVRI.  

The three phenotypes differed significantly in 
terms of 30-day mortality: 5.6% for patients with 
phenotype I and 20% for patients with phenotypes II 
and III [86].  

J.-L. Zhu et al. analyzed trends in systolic blood 
pressure (SBP) in more than 3,000 sepsis patients 
admitted to the ICU and identified seven distinct 
phenotypes [90]. The lowest mortality was observed 
in patients with phenotype 3. The authors suggest 
that the SBP trend characteristic of phenotype 3 
should be considered as a hemodynamic target for 
sepsis patients during the first 10 hours after ad-
mission to improve outcomes. In addition, when 
comparing phenotypes 2 and 6, they found that 
persistent hypotension was associated with a worse 
prognosis than a rapid decline in SBP. Applying the 
findings of this study, clinicians could use SBP trend 
monitoring to earlier identify high-risk patients [90].  

A multicenter study investigating the relation-
ship between septic cardiomyopathy phenotypes — 
defined by echocardiographic characteristics — 
and sepsis outcomes is ongoing  [89]. Preliminary 
results from this study have identified phenotypes 
with different responses to fluid therapy.  

In addition, a multicenter randomized con-
trolled trial (RCT) is underway to determine whether 
a strategy based on clinical hemodynamic pheno-
typing, with a focus on capillary refill time (CRT), 
can improve clinical outcomes compared to standard 
of care [95].  

Thus, approaches to hemodynamic manage-
ment of sepsis and septic shock can be tailored by 
identifying distinct phenotypes among the diverse 
population of sepsis patients. Infusion and cate-
cholamine support protocols can be modified based 
on phenotype, allowing for individualized and adap-
tive care for each ICU patient.  

In 2019, C.  W. Seymour et al. published the 
SENECA study [104]. The study used machine learn-
ing to analyze data from more than 63,000 patients 
and identified four novel sepsis phenotypes (α, β, 
γ, and δ). These phenotypes were distinguished by 
unique demographic profiles, laboratory markers, 
and patterns of organ dysfunction. Treatment out-
comes modeled with data from three randomized 
clinical trials (including 4,737 patients) demonstrated 
sensitivity to changes in phenotype distribution. 
The phenotypes include: 

• α phenotype: Approximately one-third of 
sepsis patients have minimal laboratory abnormal-
ities, limited organ dysfunction, and the lowest in-
hospital mortality (23%).  

• β phenotype: Found in 27% of patients, as-
sociated with advanced age, chronic comorbidities, 
and higher risk of acute kidney injury.  

• γ phenotype: Approximately 25% of patients, 
similar to the β phenotype but with elevated in-
flammatory markers and a prevalence of pulmonary 
dysfunction.  

• δ phenotype: The least common (13%) and 
most severe phenotype, characterized by severe 
multi-organ failure, including liver dysfunction and 
refractory shock, with the highest in-hospital mor-
tality (32%).  

Retrospective analysis revealed persistent differ-
ences between phenotypes. The cumulative 28-day 
mortality rates were 5% for the α phenotype, 13% for 
β, 24% for γ, and 40% for δ. In all cohorts and studies, 
the δ phenotype had significantly higher 28-day and 
365-day mortality rates than the other three phenotypes 
(P � 0.001). Early targeted therapy according to the 
Rivers protocol [113] was found to be detrimental in 
patients with the δ phenotype, based on retrospective 
analyses of more than half of the RCTs included in 
the study. The endophenotypes aHUS and MAS, 
which comprise a significant proportion of the δ phe-
notype as defined by C. W. Seymour et al., may share 
a common pathogenesis. Endotoxin is an important 
molecular target for the δ phenotype, activating both 
the complement and cytokine pathways. Patients 
susceptible to endotoxin may develop MAS, aHUS-
like syndrome, or both [114,115].  
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It is worth noting that the study by C. W. Sey-
mour et al. [104] was neither the first nor the only 
attempt to identify patterns in the population of 
patients with sepsis. We identified three studies in 
which the authors attempted to phenotype the 
heterogeneous syndrome of multiple organ dys-
function syndrome (MODS) in sepsis [91, 102, 103]. 
All three studies used machine learning methods, 
resulting in four phenotypes that significantly dif-
fered in the profile of organ dysfunction within 
MODS. Since 2019, the results of five additional 
studies on clinical phenotyping of MODS in sepsis 
have been published [105–109]. 

Recently, the results of a Russian study on the 
identification of clinical phenotypes of sepsis in 
patients with severe community-acquired pneu-
monia based on the SENECA system proposed by 
C.  W.  Seymour et al. were published  [104, 116]. 
Four sepsis phenotypes were identified in all patients: 
α (48.6%), β (19.3%), γ (13.1%) and δ (19%). The 
majority of patients with viral pneumonia belonged 
to the α phenotype (51.9%), whereas the δ phenotype 
predominated in patients with bacterial pneumonia 
(55.2%). The highest mortality rates were observed 
in patients with the β phenotype of sepsis associated 
with bacterial (7 deaths out of 7 cases) and viral 
pneumonia (115 deaths out of 121 cases). Interest-
ingly, in patients with the α phenotype of sepsis 
and severe community-acquired pneumonia caused 
by COVID-19, therapy with interleukin-6 receptor-
targeting monoclonal antibodies resulted in favorable 
sepsis outcomes in 87.5% of cases [116]. 

The research of Y. Qin et al. has practical im-
plications. The authors used 24-hour machine learn-
ing techniques to identify four computable pediatric 

sepsis phenotypes. Among these, the authors iden-
tified one phenotype (PedSep-D) as particularly 
suitable for inclusion in early personalized research 
focused on multiple organ dysfunction associated 
with thrombocytopenia and macrophage activation 
syndrome. The study resulted in a mathematical 
model capable of identifying pediatric sepsis phe-
notypes using 25 parameters available within the 
first 24 hours of hospitalization [117]. 

Although incorporating phenotyping into rou-
tine clinical practice may seem difficult due to the 
complexity of centralized clinical data collection 
and the sophistication of machine learning and 
cluster analysis methods, initial steps in this di-
rection are already underway. Clinical phenotyping 
of the diverse sepsis patient population will enable 
a more personalized approach to care, significantly 
improving the precision and selectivity of treat-
ments. There is no doubt that this global trend 
will continue and the amount of research in this 
area will only increase. 

Analysis of sepsis subtype combinations as a 
potential strategy to overcome heterogeneity A sec-
ondary analysis of the prospective MARS cohort 
study [13] aimed to compare sepsis subtypes using 
clinical, biomarker, and transcriptomic data from 
sepsis patients [118]. While molecular subtypes de-
rived from transcriptomic data can now be reliably 
identified, finding meaningful correlations between 
these molecular subtypes and clinical phenotypes 
remains challenging. The concordance between 
subtypes defined in studies such as SENECA [104], 
ARDS [119, 120], MARS [13] and SRS [8] was moderate 
to low, suggesting that each subtype represents a 
distinct patient cohort.  

Fig. 2. A possible way to overcome the heterogeneity of sepsis patients.
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These findings suggest that the identified en-
dotypes and phenotypes represent distinct, poten-
tially complementary aspects of sepsis subtypes. 
The authors propose a combined approach that 
includes molecular genetic endotyping and clinical 
phenotyping of the diverse sepsis population. This 
integrated strategy improves the accuracy of patient 
assessment. However, as R. B. E. van Amstel et al. 
note, it also presents significant challenges.  

First, effective stratification requires large sam-
ple sizes. Second, the lack of alignment between 
omics and non-omics data types creates inherent 
difficulties in integrating them. Nevertheless, the 
long-term goal of all sepsis typing methods should 
be the same: to stratify patients into as homogeneous 
subgroups as possible [118].  

Ultimately, improving the accuracy of stratifi-
cation techniques has the potential to help overcome 
the inherent heterogeneity of sepsis in the future. 

Conclusion 
Classification of heterogeneous populations 

based on molecular endotypes and multi-omics 

profiling of sepsis patients may soon provide effective 
tools for targeted therapies tailored to specific sub-
groups of patients. This approach may allow the 
use of molecular biomarkers in sepsis both for 
patient selection and for monitoring the efficacy of 
specific (immunobiologic) therapies.  

The identification of distinct biological patterns 
has the potential to facilitate the rational inclusion 
of sepsis patients in clinical trials, as well as to im-
prove diagnosis, prognosis and personalized ther-
apeutic strategies. This includes modulation of the 
immune response to sepsis (Fig. 2). 

Future efforts must focus on developing new 
strategies based on a personalized assessment of 
the patient's genetic, metabolomic and proteomic 
response to infection, as well as the clinical sepsis 
phenotype. Establishing links between these ele-
ments and identifying targets for precision sepsis 
therapies are among the most critical challenges 
for the medical research community in the coming 
years.
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