
Introduction 
Despite advances in critical care, pain is still 

highly prevalent in the intensive care unit (ICU), 
with an incidence of up to 70% in medical and sur-
gical patients, at rest and mostly during proce-
dures [1]. Untreated pain can induce cardiac insta-
bility, respiratory compromise, and immune sup-
pression. Additionally, pain is often associated with 
agitation, delirium, and longer ICU stays  [2], as 
well as chronic pain in ICU survivors [3]. 

Although the underlying reasons for this lack 
are complex, pain assessment is the main issue. In 
critically ill patients, proper pain evaluation remains 
challenging, particularly for those who are sedated, 
on mechanical ventilation, or unable to communi-
cate, as only a limited number of reliable strategies 
are currently available [4]. In patients who can com-
municate, pain is evaluated through self-report. 
Meanwhile, in non-communicative ICU patients, 
behavioral observation tools like the Behavioral 
Pain Scale (BPS) and the Critical-Care Pain Obser-

vation Tool (CPOT) are commonly used  [5]. They 
are recommended by clinical practice guidelines [6]. 
However, these tools tend to lack reliability in deeply 
sedated or paralyzed patients [7]. Additionally, their 
accuracy depends on proper training and active 
participation by the assessor, which increases the 
nursing workload. Furthermore, intermittent manual 
scoring cannot provide real-time, dynamic pain as-
sessment, limiting its effectiveness in guiding prompt 
clinical decisions. 

In this complex scenario, developing objective 
and automated methods to detect nociceptive re-
sponses and pain is essential. Recently, there has 
been increasing interest in using artificial intelligence 
(AI) and sensor technologies to achieve Automatic 
Pain Assessment (APA) in critical care [8,9]. This in-
terdisciplinary field of study utilizes various data-
driven techniques that can combine information 
from vital signs, facial expressions, and different 
biosignals to estimate nociception features and 
pain levels continuously [10]. 
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Summary 
Pain remains a major clinical challenge in the intensive care unit (ICU), especially in sedated, mechanically 

ventilated, or curarized patients due to their inability to self-report and the limited accuracy of behavioral 
tools. Therefore, innovative approaches must be developed. In this scenario, objective and observer-indepen-
dent pain assessment can support and improve personalized analgesic management. 

The aim of this review is to analyze the current artificial intelligence (AI) applications for automatic pain 
assessment (APA) in the ICU, focusing on the integration of biosignals, behavioral indicators, and multimodal 
data to detect nociceptive responses. 

A systematic search was conducted in PubMed, Web of Science, and IEEE Xplore databases (2015–2025) 
using the terms pain assessment, critical care, artificial intelligence, machine learning, facial expression, pupil-
lometry, heart rate variability, and nociception monitor. The scientific output was grouped into three main 
domains: behavioral and computer-vision methods, autonomic and electrophysiological indices, and multi-
modal and AI-driven integrated systems. 

Conclusion. Although AI systems for APA in the ICU show promising performance, several challenges 
limit their clinical translation. Signal variability due to pharmacological, neurological, or hemodynamic fac-
tors may compromise model reliability. Moreover, the scarcity of labeled ICU datasets can affect generaliz-
ability. Ethical, regulatory, and interoperability issues should be addressed. Therefore, for routine implemen-
tation, large-scale validation across diverse ICU populations is required to confirm reliability, ensure fairness, 
and establish clinical utility. 
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On these premises, this review aims to provide 
a comprehensive, state-of-the-art overview of 
AI-based approaches for APA in the ICU. Specifically, 
the objective is to summarize current AI applications, 
evaluate their validation level and clinical applicability, 
and discuss future directions for integrating these 
technologies into routine critical care practice. 

Materials and Methods 
A literature search in PubMed, Web of Science, and 

IEEE Xplore (from 2015 to September 2025) was performed 
using combinations of: «pain assessment», «ICU» OR 
«critical care», «artificial intelligence», «machine learning», 
«nociception monitor», «pupillometry», «heart rate vari-
ability», «facial expression», «electrodermal activity», 
«multimodal pain». Peer-reviewed clinical studies in ICU 
settings and technical studies relevant to pain detection 
in the ICU were considered. Approximately 80 sources 
underwent full-text review; key findings are summarized 
by thematic category. Specifically, clinical applications 
of AI-based pain assessment are grouped into behavioral 
pain assessment and computer vision (CV) approaches, 
autonomic and electrophysiological pain modalities, and 
multimodal and AI-driven integrated systems. 

Clinical Applications 
of AI-Based Pain Assessment 

1. Behavioral pain assessment and comput-
er-vision approaches. Conventional behavioral 
scales, including CPOT and BPS, remain the gold-
standard bedside tools for non-communicative adult 
ICU patients and are guideline-endorsed [6]. AI-based 
strategies can be implemented for overcoming their 
limitations, such as observer dependence, intermit-
tency, and reduced utility under deep sedation. For 
example, in the field of automated facial expression 
recognition, CV models can detect pain-related facial 
expression through facial action unit (AU) analysis. 
It is a framework originally developed within the 
Facial Action Coding System (FACS). Specifically, 
each AU corresponds to a specific muscle (or muscle 
group) contraction or facial movement (e. g., brow 
lowering, eye tightening, nose wrinkling), which can 
be objectively quantified from video data. Deep 
learning (DL)-based models, typically convolutional 
or recurrent neural networks, can automatically ex-
tract and classify these AUs to identify characteristic 
facial patterns associated with nociceptive respons-
es [11, 12]. In a prospective ICU study, DL architectures 
fine-tuned and trained on video clips achieved ap-
proximately 80% accuracy for pain vs no-pain clas-
sification and generalized to unseen patients, with 
temporal video models outperforming single-frame 
models [13]. Nevertheless, ICU constraints such as 
tubes, masks, lighting, and sedation can limit the 
efficacy of these methods. Methodological attempts 
have been conducted to overcome these limitations. 

For example, a study by X. Yuan et al. [14] proposed 
a facial AUs-guided pain assessment network specifi-
cally designed to address one of the main challenges, 
which is facial occlusion due to tubes or masks. The 
DL model integrated an AU-guided module that 
automatically identified AUs in visible, non-occluded 
regions with a texture feature extraction module 
capturing both local and global facial patterns. These 
multimodal features were then fused in a pain as-
sessment module to estimate pain state and intensity. 
Importantly, validated on both public (UNBC-Mc-
Master shoulder pain datasets) and proprietary 
datasets, the approach outperformed conventional 
models in binary and multi-class pain classification 
as well as in intensity regression (accuracy � 90%). 

Concerning other behaviors, body movement 
and ventilator synchrony may signal pain (or dis-
comfort), but are less studied for automation in the 
ICU. Probably, multimodal systems may incorporate 
pose tracking and audio when applicable [9, 10]. 

2. Autonomic and electrophysiological pain 
modalities. Since physiological modalities can cap-
ture involuntary responses mediated by the auto-
nomic nervous system (ANS), they can be adopted 
for developing APA systems  [9, 10]. Among the 
most investigated approaches are pupillometry, 
heart rate variability (HRV), electrodermal activity 
(EDA), and multimodal nociception indices that 
integrate several biosignals through AI-driven al-
gorithms. These methods offer the potential to 
continuously quantify nociceptive responses, re-
ducing observer bias. 

Infrared pupillometry quantifies the pupillary 
dilation reflex to noxious stimulation. Therefore, 
pupillometric indices such as the Pupillary Pain 
Index (PPI) may correlate with analgesic adequa-
cy  [15]. A recent prospective study evaluated the 
utility of videopupillometry for nociception assess-
ment in deeply sedated, non-neurological ICU pa-
tients. The authors compared pupillary dilation 
reflex (PDR) responses to non-noxious versus noxious 
procedures, such as gentle shoulder touch versus 
endotracheal suctioning or repositioning. Results 
demonstrated that PDR significantly increased 
during noxious procedures, with a mean difference 
of approximately 32%. After adjusting for con-
founders, only the noxious procedure remained a 
significant predictor of pupil change. A PDR threshold 
of � 12% yielded 65% sensitivity and 94% specificity 
for nociception detection (AUC = 0.83)  [16]. These 
findings support the approach as a promising and 
objective indicator of nociceptive responses in 
deeply sedated ICU patients. Nevertheless, neurologic 
injury and other limitations, such as lighting, can 
confound measurements. 

Electrocardiogram (ECG)-derived parameters 
such as HRV were also investigated. It is the 
variation in time intervals between consecutive 
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heartbeats (the R–R intervals on an ECG), reflecting 
the balance and dynamic interaction between the 
sympathetic and parasympathetic branches of the 
ANS. This physiological marker of nociception was 
adopted to develop indices such as the Analgesia 
Nociception Index (ANI), which quantifies the au-
tonomic response to pain or stress. The ANI index, 
ranging from 0 to 100, reflects parasympathetic 
predominance. In ICU patients, ANI showed mod-
erate correlation with behavioral pain and a high 
negative predictive value for moderate-to-severe 
pain when ANI was high, although sensitivity/speci-
ficity were limited [17]. Importantly, arrhythmias, 
pacemakers, β-blockers, and non-pain stressors 
confound HRV-based indices. 

Electrodermal activity (EDA) reflects changes 
in skin conductance mediated by sympathetic nerv-
ous system activation, which increases during stress, 
emotional arousal, or nociceptive stimulation [18–20]. 
When a painful or emotionally salient stimulus oc-
curs, sweat gland activity rises, transiently decreasing 
skin resistance and generating measurable skin 
conductance responses (SCRs). In research and ex-
perimental settings, EDA has proven to be a reliable 
measure of pain intensity. Machine learning (ML) 
models trained on time- and frequency-domain 
SCR features, such as response amplitude, frequency, 
rise time, and recovery slope, have demonstrated 
good predictive performance for differentiating 
pain levels, as seen in datasets like BioVid or 
SenseEmotion  [19]. However, several factors can 
affect the reliability of EDA in the ICU environment. 
Physiological conditions (e. g., hypoperfusion, neu-
ropathies), pharmacological influences (e. g., vaso-
pressors, sedatives, and anticholinergic drugs), and 
environmental factors (e. g., temperature, humidity, 
and electrode placement) can introduce artifacts 
or attenuate the signal. 

Based on biosignals, multiparameter nocicep-
tion monitors have been developed. The Nociception 
Level (NOL) integrates HR, HRV, pulse wave ampli-
tude, skin conductance, and temperature into a 
composite 0–100 index using a proprietary (AI-de-
rived) algorithm. In critical care, a randomized trial 
found NOL-guided analgesia reduced opioid dosing 
without worsening pain scores, with a trend toward 
shorter ICU stays [21, 22]. Moreover, in a prospective 
cohort study, T. S. Shahiri et al. [23] investigated the 
potential of NOL for pain assessment among me-
chanically ventilated patients able to self-report 
pain. Data was collected before, during, and after a 
non-nociceptive procedure (blood pressure cuff in-
flation) and a nociceptive procedure (endotracheal 
suctioning). Pain intensity (0–10 scale), CPOT scores, 
and NOL values were analyzed using non-parametric 
statistical tests. The authors found that NOL values 
significantly increased during endotracheal suc-
tioning compared with pre- and post-procedure 

values and with cuff inflation ( P � 0.001). NOL 
values also correlated with both self-reported pain 
and CPOT scores ( P � 0.05). More recently, Bon-
vecchio et al. [24] conducted a retrospective cohort 
study to evaluate the same device in deeply sedated 
and curarized critically ill patients, a population in 
which traditional pain monitoring is unreliable. 
The study compared NOL performance with standard 
neurovegetative indicators (e. g., heart rate, blood 
pressure) and examined its relationship with sedation 
depth measured by bispectral index (BIS). Results 
showed that NOL demonstrated superior accuracy 
in detecting nociceptive events across the overall 
cohort compared with conventional physiological 
indicators. In non-curarized patients, all indices, 
including NOL, identified nociceptive stimulation, 
whereas in paralyzed patients, only NOL reliably 
detected nociceptive responses. Since electroen-
cephalography (EEG)-derived sedation indices are 
not able to capture nociception, in the curarized 
group, no correlation was found between BIS values 
and NOL. On the other hand, sensor complexity, 
artifact susceptibility (e. g., movements), hemody-
namic instability due to shock, and arrhythmias 
are key limitations. 

3. Multimodal and AI-driven integrated sys-
tems. Combining different modalities such as facial 
action units, biosignals, and clinical data can offer 
more robust pain detection. For example, Othman 
et al. [25] fused facial analysis with EDA and used 
three different approaches, including random forest 
(RF), Long-Short Term Memory Network (LSTM), 
and LSTM with the sample-weighting method 
(LSTM-SW). They found that models improved 
multi-level pain classification over single-modality 
models, supporting complementary information 
across channels. Moreover, classical ML, such as 
support vector machines (SVMs) and RFs, and DL 
architectures have been applied. 

A particularly advanced framework for ICU 
pain evaluation is represented by the Intelligent 
Intensive Care Unit (I2CU) system [26]. This archi-
tecture integrated multimodal sensing and DL to 
enable continuous, real-time visual and physiological 
assessment of patients’ states, including pain, acuity, 
mobility, and delirium risk. The system collected 
data simultaneously from multiple modalities such 
as imaging, accelerometry, electromyography (EMG), 
environmental sensors (light and noise), and vital 
signs. For pain assessment, the visual module 
applied an AUs detection pipeline based on the 
FACS, using a multitask cascaded convolutional 
network (MTCNN) and a Swin Transformer model 
trained to recognize twelve AUs that align with es-
tablished behavioral pain metrics such as CPOT 
and BPS. Moreover, cameras captured posture and 
mobility data analyzed with CV-based You Only 
Like Once (YOLO) models, while physiological time-
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series were processed using self-supervised trans-
formers trained on more than 300 clinical variables 
to estimate acuity and autonomic states. The AI 
system merged these heterogeneous data streams 
through a real-time ML engine and displayed them 
via a clinician dashboard showing inferred pain 
scores, mobility indices, delirium risk, and envi-
ronmental parameters. Overall, the I2CU architecture 
demonstrated how AI-enhanced multimodal sensing 
and FACS-based facial analysis can operationalize 
continuous and interpretable pain assessment in 
real ICU environments, addressing many of the 
current barriers to observer-independent, real-time 
nociception monitoring. 

Although these approaches are promising, for 
generalizability, larger and diverse datasets, and 
standardized evaluation are mandatory [8, 9]. 

The characteristics of AI-based tools and meth-
ods for automatic pain assessment in ICU patients 
are presented in the table. 

Limitations and Challenges 
Several critical issues influence the effective 

implementation of AI strategies for APA in the 
ICU. First, there is the fundamental distinction 
between pain and nociception. In particular, current 

monitoring systems can capture only physiological 
responses, not the patient’s subjective experience 
of suffering  [10]. Second, patient variability and 
confounding factors, such as arrhythmias, phar-
macologic agents, neurologic injury, or vasopressor 
use, can significantly alter the biosignals on which 
AI algorithms rely, thereby affecting model relia-
bility [20–24]. A third challenge is the limited avail-
ability of labeled ICU datasets suitable for model 
training. Because pain cannot be objectively meas-
ured, most datasets use proxy labels derived from 
behavioral tools like CPOT or BPS, which introduce 
noise and variability into AI training [8, 9]. From 
an operational standpoint, real-time integration 
into ICU workflows raises additional concerns, 
such as system interoperability. Moreover, clinician 
acceptance and training remain essential as AI out-
puts must be interpretable and easily understood 
by healthcare professionals to foster trust and ef-
fective use at the bedside [8]. Finally, there are im-
portant regulatory, ethical, and fairness consider-
ations. These include safeguarding data privacy, 
ensuring unbiased model performance across di-
verse patient populations, and maintaining human 
oversight in decision-making processes through 
human-in-the-loop designs [8, 9]. 

Table. AI-based tools and methods for automatic pain assessment in ICU patients. 
Method                         Input                        AI technique                    Validation level                                    Key limitations                              Ref. 
                                                                                                                              (Internal/External)*                           
Facial expression     Face video             DL (CNN, RNN)             ICU (80% accuracy)                           Occlusion, sedation effects,    [13] 
analysis                                                                                                      (Internal validation)                          lighting/ethnic variability             
AU-guided facial     Face video +         DL (CNN + TFE              External validation on public        Occlusion handling,                   [14] 
pain network            texture                    module + fusion)           dataset (UNBC-McMaster)            need for large annotated 
                                      features                                                               and internal ICU dataset                datasets 
                                                                                                                      (� 90% accuracy)                                                                                                
PPI                                Pupil reflex            Algorithmic index         External validation in OR               Drug/neurologic/lighting     [15–16] 
                                                                                                                      setting; internal discriminative    confounders; stimulus  
                                                                                                                      study in the ICU (AUC 0.83)           required                                                
HRV (ANI)                  ECG/PPG HRV     Proprietary index          ICU diagnostic study; moderate   Arrhythmias/pacing/                 [17] 
                                                                                                                      performance, high NPV                  β-blockers;  
                                                                                                                      (Internal validation)                          low specificity                                    
Skin conductance   EDA (SCRs)           Feature engineering +   Experimental datasets                     Motion/temp confounders;      [19] 
(EDA)                                                             ML (SVM, RF, CNN)      (e. g., BioVid, SenseEmotion)         peripheral shutdown 
                                                                                                                      (External validation)                                                                                         
Multiparameter       HR/HRV, PPG,     Composite ML index   OR validated (External                     Artifacts;                                      [21–24] 
(NOL)                          EDA, temp                                                          validation); ICU RCT opioids,       sensor complexity; 
                                                                                                                      similar pain scores (Internal         hemodynamic instability 
                                                                                                                      validation)                                                                                                            
Vital-sign                   HR, BP, RR,            ML (RF model)               Retrospective ICU (� 10,000 pts;    Retrospective bias;                      [29] 
ML model                  age, sex, RASS                                                   AUC 0.903) (Internal validation)    limited external validation            
Multimodal fusion  Video + EDA         DL (CNN/LSTM/           Internal prototype validation        Data needs; integration            [25] 
(EDA + video)                                              transformers)                  with cross-modal fusion;                and missing-data handling 
                                                                                                                      external validation pending                                                                            
I2CU                            Video, depth,       DL (FACS-based AU +    Internal real-ICU pilot                     Complex infrastructure;            [26] 
(Intelligent ICU)      EMG, vitals,          Swin Transformer +      validation; external multicenter     computational load;  
                                      environment        YOLO + transformers)    validation pending                           data privacy issues                           
Note. * Internal validation refers to testing within the same dataset or cohort, while external validation refers to independent datasets 
or different clinical contexts. DL — Deep Learning; CNN — Convolutional Neural Network; RNN — Recurrent Neural Network; 
AU — Action Unit; TFE — Texture Feature Extraction; HRV — Heart Rate Variability; HR — Heart Rate; PPI — Pupillary Pain Index; 
BP — Blood Pressure; EMG — Electromyography; ECG — Electrocardiogram; PPG — Photoplethysmography; EDA — Electrodermal 
Activity; SCR — Skin Conductance Response; OR — Operating Room; ICU — Intensive Care Unit; ANI — Analgesia Nociception 
Index; NOL — Nociception Level Index; SVM — Support Vector Machine; RF — Random Forest; RASS — Richmond Agitation–Se-
dation Scale; YOLO — You Only Look Once; LSTM — Long Short-Term Memory network.
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Perspectives and Future Directions 
Near-term deployment will likely be as deci-

sion-support: continuous indices that prompt re-
assessment or preemptive analgesia, with electronic 
health record (EHR) integration, trend displays, and 
smart alarms  [21]. Goal-directed analgesia guided 
by objective indices, for instance, NOL or ANI targets, 
may reduce drug exposure without compromising 
comfort  [27]. Interestingly, multimodal strategies 
could integrate brain activity. For example, Chen et 
al. [28] developed a pain detection framework based 
on EEG signals and deep convolutional neural net-
works to distinguish induced pain from resting states. 

The multimodal integration may also include 
clinical data derived from validated assessment 
tools (Fig.). 

 A recent large-scale study explored the use of 
ML applied to vital sign data for automatic pain vi-
sualization in ICU patients. The authors investigated 
whether incorporating individual baseline deviations 
in physiological parameters could enhance model 
accuracy. Using data from over 10,000 adult ICU 
patients and more than 117,000 CPOT assessments, 
a random forest model was trained with arterial 
pressure, heart rate, respiratory rate, age, gender, 
and sedation score as predictors. Pain probability 

was defined as the likelihood of a CPOT � 3, adjusted 
for each patient’s baseline. The model achieved ex-
cellent discriminative performance (AUC = 0.903), 
demonstrating that the use of different clinical and 
instrumental inputs can enhance the sensitivity of 
the AI-based automatic pain detection and, ulti-
mately, develop reliable and scalable systems [29]. 

Nevertheless, another aspect that needs to be 
clarified is the definition of integration pathways 
among the different study components, such as be-
tween various biosignals and between biosignals 
and behavioral approaches. For example, a recent 
observational study compared pupillary response 
and skin conductance for nociception assessment 
in unconscious or deeply sedated ICU patients. Fifty-
one adults with acute brain injury or under deep se-
dation underwent tetanic stimulation while both 
parameters were recorded simultaneously. Pupillary 
dilation was quantified using the PPI, whereas skin 
conductance was expressed as the number of peaks 
per second. Results showed that more than half of 
the patients (55%) had insufficient analgesia according 
to the PPI, whereas only 29% displayed measurable 
SC activity. Importantly, no significant correlation 
was found between EDA-derived indices and pupillary 
responses [30]. Therefore, careful integration of differ-

Fig. Schematic overview of AI-driven automatic pain assessment in the ICU (Created by Marco Cascella). 
Note. Physiological, behavioral, and multimodal data are collected through bedside sensors and processed by deep learning 
models to detect nociceptive responses. After external validation and following ethical compliance, model outputs are integrated 
into clinical dashboards for real-time, observer-independent pain monitoring and personalized analgesic management. AUs — 
action units; EDA — electrodermal activity; EMG — electromyography; EHR — electronic health record.
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ent modalities is warranted to improve model ro-
bustness and reduce false interpretations. 

Other challenges need careful attention. Ad-
vances in sensing technology (wearables, non-
contact vitals) and AI (federated learning, explainable 
models, multimodal fusion) will enhance the ro-
bustness and acceptance of the developed tech-
nology  [8]. Due to the varied methods used in AI 
research, interdisciplinary standards for datasets, 
benchmarks, and reporting are essential [8]. Ethics 
must also be considered. For instance, adoption 
requires staff training and transparent communi-
cation with patients, as well as ensuring data privacy, 
reducing algorithmic bias, and maintaining human 
oversight in decision-making to preserve clinical 
accountability and patient trust  [31]. Ultimately, 

APA could turn pain into a real «continuous vital 
sign,» particularly for patients unable to speak for 
themselves. 

Conclusion 
To date, research suggests that AI-enabled APA 

can augment bedside care by continuously detecting 
nociceptive responses when traditional behavioral 
scales are infeasible. Evidence supports the utility 
of pupillometry, HRV-based indices, and multipa-
rameter monitors such as NOL. Furthermore, while 
facial analysis and multimodal AI systems are prom-
ising, these approaches require larger, diverse vali-
dation. Further high-quality investigations are 
needed for the thoughtful integration of APA methods 
in ICU care pathways.
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