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Summary

Pain remains a major clinical challenge in the intensive care unit (ICU), especially in sedated, mechanically
ventilated, or curarized patients due to their inability to self-report and the limited accuracy of behavioral
tools. Therefore, innovative approaches must be developed. In this scenario, objective and observer-indepen-
dent pain assessment can support and improve personalized analgesic management.

The aim of this review is to analyze the current artificial intelligence (AI) applications for automatic pain
assessment (APA) in the ICU, focusing on the integration of biosignals, behavioral indicators, and multimodal
data to detect nociceptive responses.

A systematic search was conducted in PubMed, Web of Science, and IEEE Xplore databases (2015-2025)
using the terms pain assessment, critical care, artificial intelligence, machine learning, facial expression, pupil-
lometry, heart rate variability, and nociception monitor. The scientific output was grouped into three main
domains: behavioral and computer-vision methods, autonomic and electrophysiological indices, and multi-
modal and Al-driven integrated systems.

Conclusion. Although Al systems for APA in the ICU show promising performance, several challenges
limit their clinical translation. Signal variability due to pharmacological, neurological, or hemodynamic fac-
tors may compromise model reliability. Moreover, the scarcity of labeled ICU datasets can affect generaliz-
ability. Ethical, regulatory, and interoperability issues should be addressed. Therefore, for routine implemen-
tation, large-scale validation across diverse ICU populations is required to confirm reliability, ensure fairness,

and establish clinical utility.
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Introduction

Despite advances in critical care, pain is still
highly prevalent in the intensive care unit (ICU),
with an incidence of up to 70% in medical and sur-
gical patients, at rest and mostly during proce-
dures [1]. Untreated pain can induce cardiac insta-
bility, respiratory compromise, and immune sup-
pression. Additionally, pain is often associated with
agitation, delirium, and longer ICU stays [2], as
well as chronic pain in ICU survivors [3].

Although the underlying reasons for this lack
are complex, pain assessment is the main issue. In
critically ill patients, proper pain evaluation remains
challenging, particularly for those who are sedated,
on mechanical ventilation, or unable to communi-
cate, as only a limited number of reliable strategies
are currently available [4]. In patients who can com-
municate, pain is evaluated through self-report.
Meanwhile, in non-communicative ICU patients,
behavioral observation tools like the Behavioral
Pain Scale (BPS) and the Critical-Care Pain Obser-

vation Tool (CPOT) are commonly used [5]. They
are recommended by clinical practice guidelines [6].
However, these tools tend to lack reliability in deeply
sedated or paralyzed patients [7]. Additionally, their
accuracy depends on proper training and active
participation by the assessor, which increases the
nursing workload. Furthermore, intermittent manual
scoring cannot provide real-time, dynamic pain as-
sessment, limiting its effectiveness in guiding prompt
clinical decisions.

In this complex scenario, developing objective
and automated methods to detect nociceptive re-
sponses and pain is essential. Recently, there has
been increasing interest in using artificial intelligence
(AI) and sensor technologies to achieve Automatic
Pain Assessment (APA) in critical care [8,9]. This in-
terdisciplinary field of study utilizes various data-
driven techniques that can combine information
from vital signs, facial expressions, and different
biosignals to estimate nociception features and
pain levels continuously [10].
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On these premises, this review aims to provide
a comprehensive, state-of-the-art overview of
Al-based approaches for APA in the ICU. Specifically,
the objective is to summarize current Al applications,
evaluate their validation level and clinical applicability,
and discuss future directions for integrating these
technologies into routine critical care practice.

Materials and Methods

A literature search in PubMed, Web of Science, and
IEEE Xplore (from 2015 to September 2025) was performed
using combinations of: «pain assessment», «ICU» OR
«critical care», «artificial intelligence», «<machine learningy,
«nociception monitor», «pupillometry», «heart rate vari-
ability», «facial expression», «electrodermal activity»,
«multimodal pain». Peer-reviewed clinical studies in ICU
settings and technical studies relevant to pain detection
in the ICU were considered. Approximately 80 sources
underwent full-text review; key findings are summarized
by thematic category. Specifically, clinical applications
of Al-based pain assessment are grouped into behavioral
pain assessment and computer vision (CV) approaches,
autonomic and electrophysiological pain modalities, and
multimodal and Al-driven integrated systems.

Clinical Applications
of AI-Based Pain Assessment

1. Behavioral pain assessment and comput-
er-vision approaches. Conventional behavioral
scales, including CPOT and BPS, remain the gold-
standard bedside tools for non-communicative adult
ICU patients and are guideline-endorsed [6]. Al-based
strategies can be implemented for overcoming their
limitations, such as observer dependence, intermit-
tency, and reduced utility under deep sedation. For
example, in the field of automated facial expression
recognition, CV models can detect pain-related facial
expression through facial action unit (AU) analysis.
It is a framework originally developed within the
Facial Action Coding System (FACS). Specifically,
each AU corresponds to a specific muscle (or muscle
group) contraction or facial movement (e.g., brow
lowering, eye tightening, nose wrinkling), which can
be objectively quantified from video data. Deep
learning (DL)-based models, typically convolutional
or recurrent neural networks, can automatically ex-
tract and classify these AUs to identify characteristic
facial patterns associated with nociceptive respons-
es [11, 12]. In a prospective ICU study, DL architectures
fine-tuned and trained on video clips achieved ap-
proximately 80% accuracy for pain vs no-pain clas-
sification and generalized to unseen patients, with
temporal video models outperforming single-frame
models [13]. Nevertheless, ICU constraints such as
tubes, masks, lighting, and sedation can limit the
efficacy of these methods. Methodological attempts
have been conducted to overcome these limitations.

For example, a study by X. Yuan et al. [14] proposed
afacial AUs-guided pain assessment network specifi-
cally designed to address one of the main challenges,
which is facial occlusion due to tubes or masks. The
DL model integrated an AU-guided module that
automatically identified AUs in visible, non-occluded
regions with a texture feature extraction module
capturing both local and global facial patterns. These
multimodal features were then fused in a pain as-
sessment module to estimate pain state and intensity.
Importantly, validated on both public (UNBC-Mc-
Master shoulder pain datasets) and proprietary
datasets, the approach outperformed conventional
models in binary and multi-class pain classification
as well as in intensity regression (accuracy >90%).

Concerning other behaviors, body movement
and ventilator synchrony may signal pain (or dis-
comfort), but are less studied for automation in the
ICU. Probably, multimodal systems may incorporate
pose tracking and audio when applicable [9, 10].

2. Autonomic and electrophysiological pain
modalities. Since physiological modalities can cap-
ture involuntary responses mediated by the auto-
nomic nervous system (ANS), they can be adopted
for developing APA systems [9, 10]. Among the
most investigated approaches are pupillometry,
heart rate variability (HRV), electrodermal activity
(EDA), and multimodal nociception indices that
integrate several biosignals through Al-driven al-
gorithms. These methods offer the potential to
continuously quantify nociceptive responses, re-
ducing observer bias.

Infrared pupillometry quantifies the pupillary
dilation reflex to noxious stimulation. Therefore,
pupillometric indices such as the Pupillary Pain
Index (PPI) may correlate with analgesic adequa-
cy [15]. A recent prospective study evaluated the
utility of videopupillometry for nociception assess-
ment in deeply sedated, non-neurological ICU pa-
tients. The authors compared pupillary dilation
reflex (PDR) responses to non-noxious versus noxious
procedures, such as gentle shoulder touch versus
endotracheal suctioning or repositioning. Results
demonstrated that PDR significantly increased
during noxious procedures, with a mean difference
of approximately 32%. After adjusting for con-
founders, only the noxious procedure remained a
significant predictor of pupil change. A PDR threshold
of >12% yielded 65% sensitivity and 94% specificity
for nociception detection (AUC=0.83) [16]. These
findings support the approach as a promising and
objective indicator of nociceptive responses in
deeply sedated ICU patients. Nevertheless, neurologic
injury and other limitations, such as lighting, can
confound measurements.

Electrocardiogram (ECG)-derived parameters
such as HRV were also investigated. It is the
variation in time intervals between consecutive
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heartbeats (the R-R intervals on an ECG), reflecting
the balance and dynamic interaction between the
sympathetic and parasympathetic branches of the
ANS. This physiological marker of nociception was
adopted to develop indices such as the Analgesia
Nociception Index (ANI), which quantifies the au-
tonomic response to pain or stress. The ANI index,
ranging from 0 to 100, reflects parasympathetic
predominance. In ICU patients, ANI showed mod-
erate correlation with behavioral pain and a high
negative predictive value for moderate-to-severe
pain when ANI was high, although sensitivity/speci-
ficity were limited [17]. Importantly, arrhythmias,
pacemakers, 3-blockers, and non-pain stressors
confound HRV-based indices.

Electrodermal activity (EDA) reflects changes
in skin conductance mediated by sympathetic nerv-
ous system activation, which increases during stress,
emotional arousal, or nociceptive stimulation [18-20].
When a painful or emotionally salient stimulus oc-
curs, sweat gland activity rises, transiently decreasing
skin resistance and generating measurable skin
conductance responses (SCRs). In research and ex-
perimental settings, EDA has proven to be a reliable
measure of pain intensity. Machine learning (ML)
models trained on time- and frequency-domain
SCR features, such as response amplitude, frequency;,
rise time, and recovery slope, have demonstrated
good predictive performance for differentiating
pain levels, as seen in datasets like BioVid or
SenseEmotion [19]. However, several factors can
affect the reliability of EDA in the ICU environment.
Physiological conditions (e. g., hypoperfusion, neu-
ropathies), pharmacological influences (e. g., vaso-
pressors, sedatives, and anticholinergic drugs), and
environmental factors (e. g., temperature, humidity,
and electrode placement) can introduce artifacts
or attenuate the signal.

Based on biosignals, multiparameter nocicep-
tion monitors have been developed. The Nociception
Level (NOL) integrates HR, HRV, pulse wave ampli-
tude, skin conductance, and temperature into a
composite 0-100 index using a proprietary (Al-de-
rived) algorithm. In critical care, a randomized trial
found NOL-guided analgesia reduced opioid dosing
without worsening pain scores, with a trend toward
shorter ICU stays [21, 22]. Moreover, in a prospective
cohort study, T.S. Shahiri et al. [23] investigated the
potential of NOL for pain assessment among me-
chanically ventilated patients able to self-report
pain. Data was collected before, during, and after a
non-nociceptive procedure (blood pressure cuffin-
flation) and a nociceptive procedure (endotracheal
suctioning). Pain intensity (0-10 scale), CPOT scores,
and NOL values were analyzed using non-parametric
statistical tests. The authors found that NOL values
significantly increased during endotracheal suc-
tioning compared with pre- and post-procedure

values and with cuff inflation ( P<0.001). NOL
values also correlated with both self-reported pain
and CPOT scores ( P<0.05). More recently, Bon-
vecchio et al. [24] conducted a retrospective cohort
study to evaluate the same device in deeply sedated
and curarized critically ill patients, a population in
which traditional pain monitoring is unreliable.
The study compared NOL performance with standard
neurovegetative indicators (e.g., heart rate, blood
pressure) and examined its relationship with sedation
depth measured by bispectral index (BIS). Results
showed that NOL demonstrated superior accuracy
in detecting nociceptive events across the overall
cohort compared with conventional physiological
indicators. In non-curarized patients, all indices,
including NOL, identified nociceptive stimulation,
whereas in paralyzed patients, only NOL reliably
detected nociceptive responses. Since electroen-
cephalography (EEG)-derived sedation indices are
not able to capture nociception, in the curarized
group, no correlation was found between BIS values
and NOL. On the other hand, sensor complexity,
artifact susceptibility (e.g., movements), hemody-
namic instability due to shock, and arrhythmias
are key limitations.

3. Multimodal and AI-driven integrated sys-
tems. Combining different modalities such as facial
action units, biosignals, and clinical data can offer
more robust pain detection. For example, Othman
et al. [25] fused facial analysis with EDA and used
three different approaches, including random forest
(RF), Long-Short Term Memory Network (LSTM),
and LSTM with the sample-weighting method
(LSTM-SW). They found that models improved
multi-level pain classification over single-modality
models, supporting complementary information
across channels. Moreover, classical ML, such as
support vector machines (SVMs) and RFs, and DL
architectures have been applied.

A particularly advanced framework for ICU
pain evaluation is represented by the Intelligent
Intensive Care Unit (I2CU) system [26]. This archi-
tecture integrated multimodal sensing and DL to
enable continuous, real-time visual and physiological
assessment of patients’ states, including pain, acuity,
mobility, and delirium risk. The system collected
data simultaneously from multiple modalities such
as imaging, accelerometry, electromyography (EMG),
environmental sensors (light and noise), and vital
signs. For pain assessment, the visual module
applied an AUs detection pipeline based on the
FACS, using a multitask cascaded convolutional
network (MTCNN) and a Swin Transformer model
trained to recognize twelve AUs that align with es-
tablished behavioral pain metrics such as CPOT
and BPS. Moreover, cameras captured posture and
mobility data analyzed with CV-based You Only
Like Once (YOLO) models, while physiological time-
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Table. Al-based tools and methods for automatic pain assessment in ICU patients.
Method Input Al technique Validation level Key limitations Ref.
(Internal/External)*
Facial expression Face video DL (CNN, RNN) ICU (80% accuracy) Occlusion, sedation effects, [13]
analysis (Internal validation) lighting/ethnic variability
AU-guided facial Face video + DL (CNN + TFE External validation on public Occlusion handling, [14]
pain network texture module + fusion) dataset (UNBC-McMaster) need for large annotated
features and internal ICU dataset datasets
(>90% accuracy)
PPI Pupil reflex Algorithmic index External validation in OR Drug/neurologic/lighting  [15-16]
setting; internal discriminative confounders; stimulus
study in the ICU (AUC 0.83) required
HRV (ANI) ECG/PPG HRV Proprietary index ICU diagnostic study; moderate Arrhythmias/pacing/ [17]
performance, high NPV B-blockers;
(Internal validation) low specificity
Skin conductance EDA (SCRs) Feature engineering+ Experimental datasets Motion/temp confounders; [19]
(EDA) ML (SVM, RE CNN) (e.g., BioVid, SenseEmotion) peripheral shutdown
(External validation)
Multiparameter =~ HR/HRV, PPG, Composite ML index OR validated (External Artifacts; [21-24]
(NOL) EDA, temp validation); ICU RCT opioids,  sensor complexity;
similar pain scores (Internal hemodynamic instability
validation)
Vital-sign HR, BP RR, ML (RF model) Retrospective ICU (>10,000 pts; Retrospective bias; [29]
ML model age, sex, RASS AUC 0.903) (Internal validation) limited external validation
Multimodal fusion Video + EDA DL (CNN/LSTM/ Internal prototype validation Data needs; integration [25]
(EDA + video) transformers) with cross-modal fusion; and missing-data handling
external validation pending
12CU Video, depth, DL (FACS-based AU+ Internal real-ICU pilot Complex infrastructure; [26]
(Intelligent ICU)  EMG, vitals, Swin Transformer+  validation; external multicenter computational load;
environment  YOLO +transformers) validation pending data privacy issues

Note. * Internal validation refers to testing within the same dataset or cohort, while external validation refers to independent datasets
or different clinical contexts. DL — Deep Learning; CNN — Convolutional Neural Network; RNN — Recurrent Neural Network;
AU — Action Unit; TFE — Texture Feature Extraction; HRV — Heart Rate Variability; HR — Heart Rate; PPI — Pupillary Pain Index;
BP — Blood Pressure; EMG — Electromyography; ECG — Electrocardiogram; PPG — Photoplethysmography; EDA — Electrodermal
Activity; SCR — Skin Conductance Response; OR — Operating Room; ICU — Intensive Care Unit; ANI — Analgesia Nociception
Index; NOL — Nociception Level Index; SVM — Support Vector Machine; RF — Random Forest; RASS — Richmond Agitation-Se-
dation Scale; YOLO — You Only Look Once; LSTM — Long Short-Term Memory network.

series were processed using self-supervised trans-
formers trained on more than 300 clinical variables
to estimate acuity and autonomic states. The Al
system merged these heterogeneous data streams
through a real-time ML engine and displayed them
via a clinician dashboard showing inferred pain
scores, mobility indices, delirium risk, and envi-
ronmental parameters. Overall, the [2CU architecture
demonstrated how Al-enhanced multimodal sensing
and FACS-based facial analysis can operationalize
continuous and interpretable pain assessment in
real ICU environments, addressing many of the
current barriers to observer-independent, real-time
nociception monitoring.

Although these approaches are promising, for
generalizability, larger and diverse datasets, and
standardized evaluation are mandatory [8, 9].

The characteristics of Al-based tools and meth-
ods for automatic pain assessment in ICU patients
are presented in the table.

Limitations and Challenges

Several critical issues influence the effective
implementation of Al strategies for APA in the
ICU. First, there is the fundamental distinction
between pain and nociception. In particular, current

monitoring systems can capture only physiological
responses, not the patient’s subjective experience
of suffering [10]. Second, patient variability and
confounding factors, such as arrhythmias, phar-
macologic agents, neurologic injury, or vasopressor
use, can significantly alter the biosignals on which
Al algorithms rely, thereby affecting model relia-
bility [20-24]. A third challenge is the limited avail-
ability of labeled ICU datasets suitable for model
training. Because pain cannot be objectively meas-
ured, most datasets use proxy labels derived from
behavioral tools like CPOT or BPS, which introduce
noise and variability into Al training [8, 9]. From
an operational standpoint, real-time integration
into ICU workflows raises additional concerns,
such as system interoperability. Moreover, clinician
acceptance and training remain essential as Al out-
puts must be interpretable and easily understood
by healthcare professionals to foster trust and ef-
fective use at the bedside [8]. Finally, there are im-
portant regulatory, ethical, and fairness consider-
ations. These include safeguarding data privacy,
ensuring unbiased model performance across di-
verse patient populations, and maintaining human
oversight in decision-making processes through
human-in-the-loop designs [8, 9].
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Fig. Schematic overview of Al-driven automatic pain assessment in the ICU (Created by Marco Cascella).

Note. Physiological, behavioral, and multimodal data are collected through bedside sensors and processed by deep learning
models to detect nociceptive responses. After external validation and following ethical compliance, model outputs are integrated
into clinical dashboards for real-time, observer-independent pain monitoring and personalized analgesic management. AUs —
action units; EDA — electrodermal activity; EMG — electromyography; EHR — electronic health record.

Perspectives and Future Directions

Near-term deployment will likely be as deci-
sion-support: continuous indices that prompt re-
assessment or preemptive analgesia, with electronic
health record (EHR) integration, trend displays, and
smart alarms [21]. Goal-directed analgesia guided
by objective indices, for instance, NOL or ANI targets,
may reduce drug exposure without compromising
comfort [27]. Interestingly, multimodal strategies
could integrate brain activity. For example, Chen et
al. [28] developed a pain detection framework based
on EEG signals and deep convolutional neural net-
works to distinguish induced pain from resting states.

The multimodal integration may also include
clinical data derived from validated assessment
tools (Fig.).

A recent large-scale study explored the use of
ML applied to vital sign data for automatic pain vi-
sualization in ICU patients. The authors investigated
whether incorporating individual baseline deviations
in physiological parameters could enhance model
accuracy. Using data from over 10,000 adult ICU
patients and more than 117,000 CPOT assessments,
a random forest model was trained with arterial
pressure, heart rate, respiratory rate, age, gender,
and sedation score as predictors. Pain probability

was defined as the likelihood of a CPOT > 3, adjusted
for each patient’s baseline. The model achieved ex-
cellent discriminative performance (AUC=0.903),
demonstrating that the use of different clinical and
instrumental inputs can enhance the sensitivity of
the Al-based automatic pain detection and, ulti-
mately, develop reliable and scalable systems [29].

Nevertheless, another aspect that needs to be
clarified is the definition of integration pathways
among the different study components, such as be-
tween various biosignals and between biosignals
and behavioral approaches. For example, a recent
observational study compared pupillary response
and skin conductance for nociception assessment
inunconscious or deeply sedated ICU patients. Fifty-
one adults with acute brain injury or under deep se-
dation underwent tetanic stimulation while both
parameters were recorded simultaneously. Pupillary
dilation was quantified using the PPI, whereas skin
conductance was expressed as the number of peaks
per second. Results showed that more than half of
the patients (55%) had insufficient analgesia according
to the PPI, whereas only 29% displayed measurable
SC activity. Importantly, no significant correlation
was found between EDA-derived indices and pupillary
responses [30]. Therefore, careful integration of differ-
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ent modalities is warranted to improve model ro-
bustness and reduce false interpretations.

Other challenges need careful attention. Ad-
vances in sensing technology (wearables, non-
contact vitals) and Al (federated learning, explainable
models, multimodal fusion) will enhance the ro-
bustness and acceptance of the developed tech-
nology [8]. Due to the varied methods used in Al
research, interdisciplinary standards for datasets,
benchmarks, and reporting are essential [8]. Ethics
must also be considered. For instance, adoption
requires staff training and transparent communi-
cation with patients, as well as ensuring data privacy;,
reducing algorithmic bias, and maintaining human
oversight in decision-making to preserve clinical
accountability and patient trust [31]. Ultimately,

References

1. Chanques G., Pohlman A., Kress J. R, Molinari N., de Jong A., Jaber S.,
Hall J. B. Psychometric comparison of three behavioural scales for
the assessment of pain in critically ill patients unable to self-report.
Crit Care. 2014; 18 (5): R160. DOI: 10.1186/cc14000. PMID: 25063269.

2. Nordness M. E, Hayhurst C. J., Pandharipande P Current perspectives
on the assessment and management of pain in the intensive care
unit. J Pain Res. 2021; 14: 1733-1744. DOI: 10.2147/JPR.S256406.
PMID: 34163231.

3. Bourdiol A., Legros V., Vardon-Bounes E, Rimmele T., Abraham P,
Hoffmann C., Dahyot-Fizelier C., et al; ALGO-REA study group;
Atlanréa Group; Société Frangaise dAnesthésie-Réanimation-SFAR
Research Network. Prevalence and risk factors of significant persistent
pain symptoms after critical care illness: a prospective multicentric
study. Crit Care. 2023; 27 (1): 199.

DOI: 10.1186/513054-023-04491-w. PMID: 37226261.

4. Sandvik R. K. N. M., Mujakic M., Haarklau I., Emilie G., Moi A. L.
Improving pain management in the intensive care unit by assessment.
Pain Manag Nurs. 2024; 25 (6): 606-614.

DOI: 10.1016/j.pmn.2024.06.013. PMID: 39244399.

5. Gomarverdi S., Sedighie L., Seifrabiei M. A., Nikooseresht M. Comparison
of two pain scales: behavioral pain scale and critical-care pain ob-
servation tool during invasive and noninvasive procedures in intensive
care unit-admitted patients. Iran J Nurs Midwifery Res. 2019; 24 (2):
151-155. DOI: 10.4103/ijnmr.JJNMR_47_18. PMID: 30820228.

6. Devlin J. W, Skrobik Y., Gélinas C., Needham D. M., Slooter A. J. C.,
Pandharipande P R, Watson P, L., et al. Clinical practice guidelines
for the prevention and management of pain, agitation/sedation,
delirium, immobility, and sleep disruption in adult patients in the
ICU. Crit Care Med. 2018; 46 (9): e825-e873.

DOI: 10.1097/CCM.0000000000003299. PMID: 30113379.

7. Pota V., Coppolino E, Barbarisi A., Passavanti M. B., Aurilio C.,
Sansone P, Pace M. C. Pain in intensive care: a narrative review.
Pain Ther. 2022; 11 (2): 359-367.

DOI: 10.1007/s40122-022-00366-0. PMID: 35220551.

8. Cascella M., Ponsiglione A. M., Santoriello V., Romano M., Cerrone V,,
Esposito D., Montedoro M., et al. Expert consensus on feasibility
and application of automatic pain assessment in routine clinical
use. J Anesth Analg Crit Care. 2025; 5 (1): 29.

DOI: 10.1186/s44158-025-00249-8. PMID: 40457422.

9. Cascella M., Schiavo D., Cuomo A., Ottaiano A., Perri E, Patrone R.,

Migliarelli S., et al. Artificial intelligence for automatic pain assess-

ment: research methods and perspectives. Pain Res Manag. 2023;

2023:6018736. DOI: 10.1155/2023/6018736. PMID: 37416623.

El-Tallawy S. N., Pergolizzi J. V., Vasiliu-Feltes 1., Ahmed R. S.,

LeQuang J.K., El-Tallawy H. N., Varrassi G., et al. Incorporation of

«artificial intelligence» for objective pain assessment: a compre-

hensive review. Pain Ther. 2024; 13 (3): 293-317.

DOI: 10.1007/s40122-024-00584-8. PMID: 38430433.

11.  Cascella M., Shariff M. N., Lo Bianco G., Monaco E, Gargano E, Si-
monini A., Ponsiglione A. M., et al. Employing the artificial intelligence
object detection tool YOLOV8 for real-time pain detection: a
feasibility study. J Pain Res. 2024; 17: 3681-3696.

DOI: 10.2147/JPR.S491574. PMID: 39540033.

10.

APA could turn pain into a real «continuous vital
sign,» particularly for patients unable to speak for
themselves.

Conclusion

To date, research suggests that Al-enabled APA
can augment bedside care by continuously detecting
nociceptive responses when traditional behavioral
scales are infeasible. Evidence supports the utility
of pupillometry, HRV-based indices, and multipa-
rameter monitors such as NOL. Furthermore, while
facial analysis and multimodal Al systems are prom-
ising, these approaches require larger, diverse vali-
dation. Further high-quality investigations are
needed for the thoughtful integration of APA methods

in ICU care pathways.
12.  Szczapa B., Daoudi M., Berretti S., Pala P, Bimbo A. D., Hammal Z.
Automatic estimation of self-reported pain by trajectory analysis
in the manifold of fixed rank positive semi-definite matrices. IEEE
Trans Affect Comput. 2022; 13 (4): 1813-1826. DOI: . PMID: 36452255.
Wu C.-L., Liu S.-E, Yu T-L., Shih S.-]., Chang C.-H., Yang Mao S.-E,
Li Y.-S., et al. Deep learning-based pain classifier based on the
facial expression in critically ill patients. Front Med (Lausanne).
2022;9:851690. DOI: 10.3389/fmed.2022.851690. PMID: 35372435.
Yuan X., Cui Z., Xu D., Zhang S., Zhao C., Wu X., Jia T, et al.
Occluded facial pain assessment in the ICU using Action Units
Guided Network. IEEE ] Biomed Health Inform. 2023; PP.

DOI: 10.1109/JBHI.2023.3336157. PMID: 37995171.
Packiasabapathy S., Rangasamy V., Sadhasivam S. Pupillometry in
perioperative medicine: a narrative review. Can J Anaesth. 2021;
68 (4): 566-578. DOI: 10.1007/512630-020-01905-z. PMID: 33432497.
Favre E., Rahmaty Z., Ben-Hamouda N., Miroz J. P, Abed-MaillardsS.,
Rusca M., Oddo M., et al. Nociception assessment with videopupil-
lometry in deeply sedated intensive care patients: discriminative
and criterion validations. Aust Crit Care. 2024; 37 (1): 84-90.

DOI: 10.1016/j.aucc.2023.07.038. PMID: 37684156.

Chanques G., Tarri T, Ride A., Prades A., De Jong A., Carr J.,
MolinariN., et al. Analgesia nociception index for the assessment
of pain in critically ill patients: a diagnostic accuracy study. Br J
Anaesth. 2017; 119 (4): 812-820.

DOI: 10.1093/bja/aex210. PMID: 29121287.

Cascella M., Vitale V. N., DAnto M., Cuomo A., Amato FE, Romano M.,
Ponsiglione A. M. Exploring biosignals for quantitative pain as-
sessment in cancer patients: a proof of concept. Electronics. 2023;
12 (17): 3716. DOI: 10.3390/electronics12173716.

Pouromran E,, Radhakrishnan S.,, Kamarthi S. Exploration of phys-
iological sensors, features, and machine learning models for pain
intensity estimation. PLoS One. 2021; 16 (7): €0254108.

DOI: 10.1371/journal.pone.0254108. PMID: 34242325.

Cascella M., Di Gennaro R, Crispo A., Vittori A., Petrucci E., Sciorio E,
Marinangeli E, et al. Advancing the integration of biosignal-based
automated pain assessment methods into a comprehensive model
for addressing cancer pain. BMC Palliat Care. 2024; 23 (1): 198.
DOI: 10.1186/512904-024-01526-z. PMID: 39097739.

Calypkan B., Besir Z., Sen O. Pain monitoring in intensive care: how
does the nociception level index affect treatment and prognosis? A
randomized, controlled, double-blind trial. Ulus Travma Acil Cerrahi
Derg. 2024; 30 (6): 415-422.

DOI: 10.14744/tjtes.2024.95533. PMID: 38863294.

Gélinas C., Shahiri T. S., Richard-Lalonde M., Laporta D., Morin J. E,
Boitor M., Ferland C. E., et al. Exploration of a multi-parameter
technology for pain assessment in postoperative patients after
cardiac surgery in the intensive care unit: the nociception level
index (NOL) TM. J Pain Res. 2021; 14: 3723-3731.

DOI: 10.2147/JPR.S332845. PMID: 34908872.

Shahiri T. S., Richard-Lalonde M., Richebé P, Gélinas C. Exploration
of the nociception level (NOL™) index for pain assessment during
endotracheal suctioning in mechanically ventilated patients in the
intensive care unit: an observational and feasibility study. Pain
Manag Nurs. 2020; 21 (5): 428-434. DOI: 10.1016/j.pmn.2020.02.067.
PMID: 32354616.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

GENERAL REANIMATOLOGY, 2025, 21; 6

www.reanimatology.com



92

Reviews & Short Communications

24.

25.

26.

27.

28.

Bonvecchio E., Vailati D., Mura E D., Marino G. Nociception level
index variations in ICU: curarized vs non-curarized patients — a pilot
study. J Anesth Analg Crit Care. 2024; 4 (1): 57.

DOI: 10.1186/s44158-024-00193-z. PMID: 39164731.

Othman E., Werner P, Saxen E, Al-Hamadi A., Gruss S., Walter S.
Automated electrodermal activity and facial expression analysis
for continuous pain intensity monitoring on the X-ITE pain database.
Life (Basel). 2023; 13 (9): 1828.

DOI: 10.3390/1ife13091828. PMID: 37763232.

Nerella S., Guan Z., Siegel S., Zhang J., Zhu R., Khezeli K., Bihorac A.,
et al. Al-enhanced intensive care unit: revolutionizing patient care
with pervasive censing. arXiv: 2303.06252.

DOI: 10.48550/arXiv.2303.06252.

Ledowski T. Objective monitoring of nociception: a review of
current commercial solutions. Br J Anaesth. 2019; 123 (2): e312—-e321.
DOI: 10.1016/j.bja.2019.03.024. PMID: 31047645.

Chen D., Zhang H., Kavitha R T, Loy E L., Ng S. H., Wang C., PhuaKk.S.,
et al. Scalp EEG-based pain detection using a convolutional neural

29.

30.

31.

network. IEEE Trans Neural Syst Rehabil Eng. 2022; 30: 274-285.
DOI: . PMID: 35089860.

Kobayashi N., Watanabe K., Murakami H., Yamauchi M. Continuous
visualization and validation of pain in critically ill patients using
artificial intelligence: a retrospective observational study. Sci Rep.
2023; 13 (1): 17479.

DOI: 10.1038/s41598-023-44970-2. PMID: 37838818.

Fratino S., Peluso L., Talamonti M., Menozzi M., Costa Hirai L. A.,
Lobo E A., Prezioso C., et al. Evaluation of nociception using quan-
titative pupillometry and skin conductance in critically ill unconscious
patients: a pilot study. Brain Sci. 2021; 11 (1): 109.

DOI: 10.3390/brainscil1010109. PMID: 33467451.

Cascella M., Laudani A., Scarpati G., Piazza O. Ethical issues in
pain and palliation. Curr Opin Anaesthesiol. 2024; 37 (2): 199-204.
DOI: 10.1097/AC0.0000000000001345. PMID: 38288778.

Received 10.10.2025
Accepted 20.11.2025

www.reanimatology.com

GENERAL REANIMATOLOGY, 2025, 21; 6



