Preview

Общая реаниматология

Расширенный поиск

Этиотропная терапия COVID-19: критический анализ и перспективы

https://doi.org/10.15360/1813-9779-2020-4-0-1

Полный текст:

Аннотация

Эпидемия COVID-19, начавшаяся в декабре 2019 года в Китае, за несколько месяцев распространилась на все страны мира, приняв характер пандемии, число заболевших исчисляется миллионами. Механизмы патогенеза новой коронавирусной инфекции, вызванной неизвестным ранее вирусом SARS-CoV2, остаются недостаточно изученными. Для лечения COVID-19 применяют препараты разных групп, по мере появления опыта рекомендации регулярно пересматриваются. В условиях текущей пандемии важно предоставить специалистам актуальную информацию об эффективности и безопасности лечебных препаратов, применяемых для лечения пациентов с COVID-19, и о перспективных исследованиях в этой области.

Цель обзора - критический анализ опубликованных результатов лечения COVID-19 с использованием различных групп препаратов для выбора наиболее перспективных лекарственных средств.

Поиск источников провели по базам данных PubMed, Scopus, Cyberleninka, Clinical Trials, Cochrane Library и др., рассматривали преимущественно рандомизированные клинические исследования 2020 года, а также работы по изучению препаратов-претендентов. Материал статьи структурирован по механизму действия препаратов, содержит разделы противовирусной, иммуномодулирующей, антибактериальной терапии. В поиске новой перспективной мишени в лечении COVID-19 концентрировали внимание на матриксных металлопротеиназах (ММР), избыток которых ведет к разрушению внеклеточного матрикса, базальных мембран эпителия и эндотелия, способствует вторичному повреждению легочной ткани. В работе теоретически обосновали применение ингибиторов MMP на примере доксициклина, предложили протокол исследования для оценки эффективности нового подхода к лечению COVID-19.

Заключение. Лекарственных средств с доказанной эффективностью в отношении COVID 19 в настоящее время нет. Препараты с разными механизмами действия применяются не по показаниям, часто в комбинациях, в этих условиях трудно избежать суммирования побочных эффектов с неблагоприятными последствиями для пациента. Применение препаратов с недоказанной эффективностью оправдано лишь в рамках клинических исследований с последующим анализом и публикацией результатов, чтобы в случае успеха с уверенностью рекомендовать их большинству пациентов с COVID-19.

Об авторах

Н. В. Белобородова
НИИ общей реаниматологии им. В. А. Неговского ФНКЦ РР
Россия
107031, г. Москва, ул. Петровка, д. 25, стр. 2


Е. В. Зуев
НИИ общей реаниматологии им. В. А. Неговского ФНКЦ РР; Национальный медико-хирургический центр им Н.И. Пирогова
Россия
107031, г. Москва, ул. Петровка, д. 25, стр. 2;
105203, г. Москва, ул. Нижняя Первомайская, д. 70


М. Н. Замятин
Национальный медико-хирургический центр им Н.И. Пирогова
Россия
105203, г. Москва, ул. Нижняя Первомайская, д. 70


В. Г. Гусаров
Национальный медико-хирургический центр им Н.И. Пирогова
Россия
105203, г. Москва, ул. Нижняя Первомайская, д. 70


Список литературы

1. Stollenwerk N., Harper R.W., Sandrock Ch.E. Bench-to-bedside review: Rare and common viral infections in the intensive care unit – linking pathophysiology to clinical presentation. Critical Care. 2008; 12 (4): 219. DOI: 10.1186/cc6917

2. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Временные методические рекомендации МЗ РФ. Версия 7 от 03.06.2020 https://static-0.rosminzdrav.ru/system/attachments/attaches/000/050/584/original/03062020_МR_COVID-19_v7.pdf

3. Alexander P.E., Debono V.B., Mammen M.J., Iorio A., Aryal K., Deng D., Brocard E., Alhazzani W. COVID-19 research has overall low methodological quality thus far: case in point for chloroquine/hydroxychloroquine. Journal of Clinical Epidemiology. 2020; Apr 21; S0895-4356(20)30371-1. DOI: 10.1016/j.jclinepi.2020.04.016

4. U.S. National Library of Medicine. Clinical Trials.com https://clinicaltrials.gov/ct2/results/details?cond=COVID-19

5. Keyaerts E., Li S., Vijgen L., Rysman E., Verbeeck J., Van Ranst M., Maes P. Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrobial agents and chemotherapy. 2009. 53(8); pp. 3416-3421. DOI: 10.1128/AAC.01509-08

6. Vincent M.J., Bergeron E., Benjannet S., Erickson B.R., Rollin P.E., Ksiazek Th.G., Seidah N.G., Nichol St.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology journal. 2005; 2 (1): 69. DOI: 10.1186/1743-422X-2-69

7. Wang M., Cao R., Zhang L., Yang X., Liu J., Xu M., Shi Z., Hu Z., Zhong W. and Xiao G., Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell research. 2020; 30 (3): 269-271. DOI: 10.1038/s41422-020-0282-0

8. Delvecchio R., Higa L.M., Pezzuto P., Valadão A.L., Garcez P.P., Monteiro F.L., Loiola E.C., Dias A.A., Silva F.J.M., Aliota M.T., Caine E.A., Osorio J.E., Bellio M., O'Connor D.H., Rehen S., de Aguiar R.S., Savarino A., Campanati L., Tanuri A. Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models. Viruses, 29. Nov. 2016; 8 (12): 322. DOI: 10.3390/v8120322. PMID: 27916837

9. te Velthuis A.J.W., van den Worm S.H.E., Sims A.C., Baric R.S., Snijder E.J., van Hemert M.J. Zn2+ Inhibits Coronavirus and Arterivirus RNA Polymerase Activity In Vitro and Zinc Ionophores Block the Replication of These Viruses in Cell Culture. PloS pathogens. 2010; November. 4. DOI: 10.1371/journal.ppat.1001176

10. Gao J, Tian Zh., Yang X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020; 14: 723.DOI:10.5582/bst.2020.01047. PMID: http://www.ncbi.nlm.nih.gov/pubmed/32074550

11. Gautret P., Lagier J.-Ch., Parola Ph.,Hoang V.Th., Meddeb L., Mailhe M.,Doudier B., Courjon J., Giordanengo V., Vieira V.E., Dupont H.T., Honoré S., Colson Ph., Chabrière E., La Scola B., Rolain J.-M., Brouqui Ph., Raoult D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020:105949. DOI:10.1016/j.ijantimicag.2020.105949. PMID: http://www.ncbi.nlm.nih.gov/pubmed/32205204

12. Chu C.M., Cheng V.C.C., Hung I.F.N., Wong M.M.L., Chan K.H., Chan K.S., Kao R.Y.T., Poon L.L.M., C.L.P., Guan Y., Peiris J.S.M., Yuen K.Y., HKU/UCH SARS Study Group. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004; 59: 252-256. DOI: 10.1136/thorax.2003.012658

13. Chan K.S., Lai S.T., Chu C.M., Tsui E., Tam C.Y., Wong M.M.L., Tse M.W., Que T.L., Peiris J.S.M., Sung J., Wong V.C.W., Yuen K.Y. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med J. 2003; 9: 399-406. PMID: 14660806

14. Cao B., Wang Y., Wen D., Liu W., Wang J., Fan G., Ruan L., Song B., Cai Y., Wei M., Li X., Xia J., Chen N., Xiang J., Yu T., Bai T., Xie X., Zhang L., Li C., Yuan Y., Chen H., Li H., Huang H., Tu S., Gong F., Liu Y., Wei Y., Dong C., Zhou F., Gu X., Xu J., Liu Z., Zhang Y., Li H., Shang L., Wang K., Li K., Zhou X., Dong X., Qu Z., Lu S., Hu X., Ruan S., Luo S., Wu J., Peng L., Cheng F., Pan L., Zou J., Jia C., Wang J., Liu X., Wang S., Wu X., Ge Q., He J., Zhan H., Qiu F., Guo L., Huang C., Jaki T., Hayden F.G., Horby P.W., Zhang D., Wang C. A Trial of Lopinavir–Ritonavir in adults hospitalized with severe COVID-19. N Engl J Med. 2020; 382: 1787-1799. DOI: 10.1056/NEJMoa2001282. PMID: 32187464

15. Cai Q., Huang D., Ou P., Yu H., Zhu Zh., Xia Zh., Su Y., Ma Zh., Zhang Y., Li Zh., He Q., Liu L., Fu Y., Chen J. COVID-19 in a designated infectious diseases hospital outside Hubei Province, China. MedRxiv. 2020; DOI: 10.1101/2020.02.17.20024018. PMID: 32239761

16. Hu L., Chen S., Fu Y., Gao Z., Long H., Ren H.-W., Zuo Y., Li H., Wang J., Xu Q.-B., Yu W.-X., Liu J., Shao Ch., Hao J.-J., Wang Ch.-Zh., Ma Y., Wang Zh., Yanagihara R. J.-M. Wang, Deng Y. Risk factors associated with clinical outcomes in 323 COVID-19 patients in Wuhan, China. medRxiv 2020 DOI: 10.1101/2020.03.25.20037721. PMID: 32361738

17. Yan D., Liu X.-Y., Zhu Y.-N, Huang L., Dan B.-T., Zhang G.-J., Gao Y.-H. Factors associated with prolonged viral shedding and impact of Lopinavir/Ritonavir treatment in patients with SARS-CoV-2. Eur Respir J. 2020;2000799. DOI: 10.1183/13993003.00799-2020

18. Cai Q., Yang M,. Liu D,. Chen J,. Shu D., Xia J., Liao X., Gu Y., Cai Q., Yang Y., Shen C., Li X., Peng L., Huang D., Zhang J., Zhang S., Wang F., Liu J., Chen L., Chen S., Wang Z., Zhang Z., Cao R., Zhong W., Liu Y., Liu L. Experimental treatment with favipiravir for COVID-19: An open-label control study. Engineering. 2020; DOI: 10.1016/j.eng.2020.03.007

19. de Wit E., Feldmann F., Cronin J., Jordan R., Okumura A., Thomas T., Scott D., Cihlar T., Feldmann H. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Nat Acad Sci USA. 2020; 117 (12): 6771-6776. DOI: 10.1073/pnas.1922083117. PMID: 32054787

20. Beigel John H., Tomashek Kay M., Dodd Lori E., Mehta Aneesh K., Zingman Barry S., Kalil Andre C., Hohmann Elizabeth, Chu Helen Y., Luetkemeyer Annie, Kline Susan, Lopez de Castilla Diego, Finberg Robert W., Dierberg Kerry, Tapson Victor, Hsieh Lanny, Patterson Thomas F., Paredes Roger, Sweeney Daniel A., Short William R., Touloumi Giota, Lye David Chien, Ohmagari Norio, Oh Myoung-don, Ruiz-Palacios Guillermo M., Benfield Thomas, Fätkenheuer Gerd, Kortepeter Mark G., Atmar Robert L., Creech C. Buddy, Lundgren Jens, Babiker Abdel G., Pett Sarah, Neaton James D., Burgess Timothy H., Bonnett Tyler, Green Michelle, Makowski Mat, Osinusi Anu, Nayak Seema, Lane H. Clifford. Remdesivir for 5 or 10 Days in Patients with Severe Covid-19. N Engl J Med. 2020. DOI: 10.1056/NEJMoa2015301.

21. Mair-Jenkins J., Saavedra-Campos M., Baillie J.K., Cleary P., Khaw F.-M., Lim W.Sh., Makki S., Rooney K.D., Nguyen-Van-Tam J.S., Beck Ch.R. Convalescent Plasma Study Group. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis. 2015; 211 (1): 80-90. DOI: 10.1093/infdis/jiu396. PMID: 25030060

22. Shen Ch., Wang Zh., Zhao F., Yang Y., Li J., Yuan J., Wang F., Li D., Yang M., Xing L., Wei J., Xiao H., Yang Y., Qu J., Qing L., Chen L., Xu Zh., Peng L., Li Y., Zheng H., Chen F., Huang K., Jiang Y., Liu D., Zhang Zh., Liu Y., Liu L. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA. 2020; 323 (16): 1582-1589. DOI:10.1001/jama.2020.4783. PMID: 32219428

23. Duan K., Liu B., Li C., Zhang H., Yu T., Qu., Zhou M., Chen L., Meng Sh., Hu Y., Peng Ch., Yuan M., Huang J., Wang Z., Yu J., Gao., Wang D., Yu X., Li L., Zhang J., Wu X., Li B., Xu Y., Chen W., Peng Y., Hu Y., Lin L., Liu X., Huang Sh., Zhou Zh., Zhang L., Wang Y., Zhang Zh., Deng K., Xia Zh., Gong Q., Zhang W., Zheng X., Liu Y., Yang H., Zhou D., Yu D., Hou J., Shi Zh., Chen S., Chen Zh., Zhang X., Yang X. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. PNAS. 2020; 117 (17): 9490-9496; first published April 6, 2020. DOI: 10.1073/pnas.2004168117. PMID: 32253318

24. Pandey S., Vyas G.N. Adverse effects of plasma transfusion. Transfusion. 2012; May. 52(Suppl 1): 65S–79S. DOI: 10.1111/j.1537-2995.2012.03663.x

25. Caly L., Druce J.D., Catton M.G., Jans D.A., Wagstaff K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research. June 2020; 178: 104787. DOI: 10.1016/j.antiviral.2020.104787. PMID: 32251768

26. Rossignol J.-F. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. Journal of Infection and Public Health., 2016; 9 (3): 227-230. DOI: 10.1016/j.jiph.2016.04.001

27. Sisk J.M., Frieman M.B., Machamer C.E. Coronavirus S protein-induced fusion is blocked prior to hemifusion by Abl kinase inhibitors. J Gen Virol. 2018 May; 99 (5):619-630. DOI: 10.1099/jgv.0.001047. PMID: 29557770

28. Alhazzani W., Møller M.H., Arabi Y.M., Loeb M., Gong M.Ng, Fan E., Oczkowski S., Levy M.M., Derde L., Dzierba A., Du B., Aboodi M., Wunsch H., Cecconi M., Koh Y., Chertow D.S., Maitland K., Alshamsi F., Belley-Cote E., Greco M., Laundy M., Morgan J.S., Kesecioglu J., McGeer A., Mermel L., Mammen M.J., Alexander P.E., Arrington A., Centofanti J.E., Citerio G., Baw B., Memish Z.A., Hammond N., Hayden F.G., Evans L., Rhodes A. Surviving Sepsis Campaign. Guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Critical Care Medicine. 2020. Volume Online First - Issue -DOI:10.1097/CCM.0000000000004363. PMID: 32222812

29. Isidori, A.M., Arnaldi, G., Boscaro, Falorni M. A., Giordano C., Giordano R., Pivonello R., Pofi R., Hasenmajer V., Venneri M. A., Sbardella E., Simeoli C., Scaroni C., Lenziet A. COVID-19 infection and glucocorticoids: update from the Italian Society of Endocrinology Expert Opinion on steroid replacement in adrenal insufficiency. J Endocrinol Invest (2020). https://doi.org/10.1007/s40618-020-01266-w

30. Arabi Y.M., Mandourah Y., Al-Hameed F., Sindi A.A., Almekhlafi G.A., Hussein M.A., Jose J., Pinto R., Al-Omari A., Kharaba A., Almotairi A., Al Khatib K., Alraddadi B., Shalhoub S., Abdulmomen A., Qushmaq I., Mady A., Solaiman O., Al-Aithan A.M., Al-Raddadi R., Ragab A., Balkhy H.H., Al Harthy A., Deeb A.M., Al Mutairi H., Al-Dawood A., Merson L., Hayden F.G., Fowler R.A., Saudi Critical Care Trial Group. Corticosteroid therapy for critically ill patients with middle east respiratory syndrome. Am J Respir. Crit Care Med. 2018; 197: 757–767. DOI: 10.1164/rccm.201706-1172OC. PMID: 29161116

31. Lee N., Chan K.C.A., Hui D.S., Ng E.K.O., Wu A., Chiu R.W.K., Wong V.W.S., Chan P.K.S., Wong K.T., Wong E., Cockram C.S., Tam J.S., Sung J.J.Y., Lo Y.. Effects of early corticosteroid treatment on plasma SARS-associated Coronavirus RNA concentrations in adult patients. J Clin Virol. 2004; 31: 304–309. DOI: 10.1016/j.jcv.2004.07.006.

32. Chen R.-Сh., Tang X.-P., Tan Sh.-Y., Liang B.-L., Wan Zh.-Y., Fang J.-Q., Zhong N. Treatment of severe acute respiratory syndrome with glucosteroids. Chest Journal. 2006; 129(6): 1441–1452. DOI: 10.1378/chest.129.6.1441. PMID: 16778260

33. Zha L., Li Sh., Pan L., Tefsen B., Li Y., French N., Chen L., Yang G., Villanueva E.V. Corticosteroid treatment of patients with coronavirus disease 2019 (COVID‐19). Medical Journal of Australia. 2020; 08 April. DOI: 10.5694/mja2.50577. PMID: 32296987

34. Keskin O., Farzan N., Birben E., H.Akel, Karaaslan C., Maitland-van der Zee A.H., Wechsler M.E., Vijverberg S.J., Kalayci O. Genetic associations of the response to inhaled corticosteroids in asthma: a systematic review. Clin Transl Allergy. 2019; 9: 2. Published online 2019 Jan 9. DOI: 10.1186/s13601-018-0239-2. PMID: 30647901

35. Zhang X, Song K, Tong F, Fei M., Guo H., Lu Zh., Wang J., Zheng Ch. First case of COVID-19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood Advances. Apr 14; 4 (7): 1307-1310. DOI:10.1182/bloodadvances.2020001907. PMID: 32243501

36. Case Study: Treating COVID-19 in a Patient with Multiple Myeloma [news release]. Washington. Published April 3, 2020. hematology.org/newsroom/press-releases/2020/case-study-treating-covid-19. Accessed April 7, 2020.

37. Jones G., Ding Ch. Tocilizumab: A Review of Its Safety and Efficacy in Rheumatoid Arthritis. Clin Med Insights Arthritis Musculoskelet Disord. 2010; 3: 81–89. DOI: 10.4137/CMAMD.S4864

38. Gritti G., Raimondi F., Ripamonti D., Riva I., Landi F., Alborghetti L., Frigeni M., Damiani M., Micò C., Fagiuoli S., Cosentini R., Lorini F.L., Fabretti F., . Morgan J.H, Owens B.M.J., Kanhai K., Cowburn J., Rizzi M., Di Marco F., Rambaldi A. Use of siltuximab in patients with COVID-19 pneumonia requiring ventilatory support. medRxiv. preprint DOI:10.1101/2020.04.01.20048561

39. Treatment of COVID-19 Patients With Anti-interleukin Drugs (COV-AID). ClinicalTrials.gov Identifier: NCT04330638. https://clinicaltrials.gov/ct2/show/record/NCT04330638

40. Regeneron and sanofi provide update on u.s. phase 2/3 adaptive-designed trial of kevzara® (sarilumab) in hospitalized covid-19 patients. TARRYTOWN, N.Y. and PARIS, April 27, 2020 /PRNewswire/ -- https://www.prnewswire.com/news-releases/regeneron-and-sanofi-provide-update-on-us-phase-23-adaptive-designed-trial-of-kevzara-sarilumab-in-hospitalized-covid-19-patients-301047326.html

41. Cavalli G., De Luca G., Campochiaro C., Della-Torre E., Ripa M., Canetti D., Oltolini Ch., Castiglioni B., Din Ch.T., Boffini N., Tomelleri A., Farina N., Ruggeri A., Rovere-Querini P., Di Lucca G., Martinenghi S., Scotti R., Tresoldi M., Ciceri F., Landoni G., Zangrillo A., Scarpellini P., Dagna L. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020; Published Online May 7. DOI: 10.1016/S2665-9913(20)30127-2. PMID: 32501454

42. O’Shea J.J., Kontzias A., Yamaoka K., Tanaka Y., Laurence A. Janus kinase Inhibitors in autoimmune diseases. Ann Rheum Dis. Author manuscript; 2013; Apr;72. Suppl 2(0 2): ii111-5. DOI: 10.1136/annrheumdis-2012-202576. PMID: 23532440

43. Cantini F., Niccoli L., Matarrese D., Nicastri E., Stobbione P., Goletti D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J Infect. 2020; Apr 23; S0163-4453(20)30228-0. DOI: 10.1016/j.jinf.2020.04.017. PMID: 32333918

44. Safety and Efficacy of Ruxolitinib for COVID-19. ClinicalTrials.gov Identifier: NCT04348071. https://clinicaltrials.gov/ct2/show/NCT04348071

45. Acalabrutinib Study With Best Supportive Care Versus Best Supportive Care in Subjects Hospitalized With COVID-19. CALAVI (Calquence Against the Virus) (ACE-ID-201). ClinicalTrials.gov Identifier: NCT04346199. https://clinicaltrials.gov/ct2/show/NCT04346199

46. TOFAcitinib in SARS-CoV2 Pneumonia. ClinicalTrials.gov Identifier: NCT04332042. https://clinicaltrials.gov/ct2/show/NCT04332042

47. Isaacs A., Lindenmann J. Virus interference. I. The interferon. Proc R Soc London Ser B. 1957; 147: 258–267. DOI: 10.1098/rspb.1957.0048

48. Charles E. Samuel. Antiviral Actions of Interferons. Clin Microbiol Rev. 2001; Oct; 14(4): 778–809. DOI: 10.1128/CMR.14.4.778-809.2001

49. Sheahan T.P., Sims A.C., Leist S.R., Schäfer A., Won J., Brown A.J., Montgomery S.A., Hogg A., Babusis D., Clarke M.O., Spahn J.E., Bauer L., Sellers S., Porter D., Feng J.Y., Cihlar T., Jordan R., Denison M.R., Baric R.S. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun., 2020; 11. 222. DOI: 10.1038/s41467-019-13940-6. PMID: 31924756

50. Omrani A.S., Saad M.M., Baig K., Bahloul A., Abdul-Matin M., Alaidaroos A.Y., Almakhlafi G.A., Albarrak M.M., Memish Z.A., Albarrak A.M. Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect. Dis. 2014; 14: 1090-1095. DOI: 10.1016/S1473-3099(14)70920-X. PMID: 25278221

51. Arabi Y.M., Shalhoub S., Mandourah Y., Al-Hameed F., Al-Omari A., Al Qasim E., Jose J., Alraddadi B., Almotairi A., Al Khatib K., Abdulmomen A., Qushmaq I., Sindi A.A., Mady A., Solaiman O., Al-Raddadi R., Maghrabi K., Ragab A., Al Mekhlafi G.A., Balkhy H.H., Al Harthy A., Kharaba A., Gramish J.A., Al-Aithan A.M., Al-Dawood A., Merson L., Hayden F.G., Fowler R. Ribavirin and interferon therapy for critically ill patients with middle east respiratory syndrome: A multicenter observational study. Clin Infect Dis. 2020; 70 (9): 1837-1844. DOI: 10.1093/cid/ciz544. PMID: 31925415

52. National institutes of health. immune-based therapy under evaluation for treatment of COVID-19. Last Updated: May 12, 2020. https://www.covid19treatmentguidelines.nih.gov/immune-based-therapy/

53. Hung I.F.-N., Lung K.-Ch., Tso E.Y.-K., Liu R., Chung T.W.-H., Chu M.-Y., Ng Y.-Y., Lo J., Chan J., Tam A.R., Shum H.-P., Chan V., Wu A.K.-L., Sin K.-M., Leung W.-Sh., Law W.-L., Lung D.Ch., Sin S., Yeung P., Yip C.Ch.-Y., Zhang R.R., Fung A.Y.-F., Yan E.Y.-W., Leung K.-H., Ip J.D., Chu A.W.-H., Chan W.-M., Ng A.Ch.-K., Lee R., Fung K., Yeung A., Wu T.-Ch., Chan J.W.-M., Yan W.-W., Chan W.-M., Chan J. F.-W., Lie A.K.-W., Tsang O.T.-Y., Cheng V.Ch.-Ch., Que T.-L., Lau Ch.-S., Chan K.-H., To K.K.-W., Yuen K.-Y. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020; 395 (10238): 1695-1704. DOI: 10.1016/S0140-6736(20)31042-4. PMID: 32401715

54. Mantlo E., Bukreyeva N., Maruyama J., Paessler S., Huang Ch. Antiviral activities of type I interferons to SARS-CoV-2 infection. Antiviral Res. 2020; 179: 104811. DOI: 10.1016/j.antiviral.2020.104811. PMID: 32360182

55. de Jong H.J.I., Kingwell E., Shirani A., Tervaert J.W.C., Hupperts R., Zhao Y., Zhu F., Evans Ch., van der Kop M.L., Traboulsee A., Gustafson P., Petkau J., Marrie R. A., Tremlett H., British Columbia Multiple Sclerosis Clinic Neurologists. Evaluating the safety of β-interferons in MS: a series of nested case-control studies. Neurology. 2017; 88 (24): 2310–2320. DOI: 10.1212/WNL.0000000000004037. PMID: 28500224

56. Hu Y., Ye Y., Ye L., Wang X., Yu H. Efficacy and safety of interferon alpha therapy in children with chronic hepatitis B. Medicine (Baltimore). 2019; 98 (32): e16683. DOI: 10.1097/MD.0000000000016683. PMID: 31393369

57. Open-label, Randomized Study of IFX-1 in Patients With Severe COVID-19 Pneumonia (PANAMO). ClinicalTrials.gov Identifier: NCT04333420. https://clinicaltrials.gov/ct2/show/NCT04333420

58. Golchin A., Seyedjafari E., Ardeshirylajimi A. Mesenchymal stem cell therapy for COVID-19: Present or Future. Stem Cell Rev Rep. 2020; Apr 13: 1–7. DOI: 10.1007/s12015-020-09973-w. PMID: 32281052

59. Website of the British society for antimicrobial therapy http://bsac.org.uk/

60. Website of National Institute for Health and Care Excellence [NICE] https://www.nice.org.uk/guidance

61. Qing Y., Wenyang J., Raoyao L. COVID-19 Patients with Gastrointestinal Symptoms Are More Likely to Develop into Severe Cases "Science and Technology Daily", 21.04.2020 https://gmcc.alibabadoctor.com/news/detail?content_id=1496ca6b1c270a6e8a38ddf92471d795

62. Белобородова Н.В. «Сепсис. Метаболомный подход». Монография. М.: Издательство Медицинское информационное агентство «МИА»; 2018. 272. ISBN: 978-5-9986-0350-1

63. Beloborodova N.V., Sarshor Yu.N., Bedova A.Yu., Chernevskaya E.A., Pautova A.K. Involvement of Aromatic Metabolites in the Pathogenesis of Septic Shock. SHOCK. 2018; 50(3): 273-279. DOI: 10.1097/SHK.0000000000001064

64. Beloborodova N.V., Olenin A.Yu., Pautova A.K. Metabolomic findings in sepsis as a damage of host-microbial metabolism integration. J. of Crit. Care. 2018; 43: 246–255. doi: 10.1016/j.jcrc.2017.09.014

65. Черневская Е.А., Белобородова Н.В. Микробиота кишечника при критических состояниях (обзор). Общая реаниматология. 2018. 14(5): 96-119. DOI:10.15360/1813-9779-2018-5-96-119

66. Beloborodova N.V., Grechko A.V., Olenin A.Yu. Chapter «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology» in Book «Infection and Sepsis» InTechOpen [online first]. DOI: 10.5772/intechopen.87176

67. Белобородова Н.В. Метаболизм микробиоты при критических состояниях (обзор и постулаты). Общая реаниматология. 2019; 15(6), 62-79. DOI:10.15360/1813-9779-2019-6-62-79

68. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID- 19). Временные методические рекомендации МЗ РФ. Версия 3 (03.03.2020), раздел 4.5.1. Особенности клинических проявлений. https://www.garant.ru/products/ipo/prime/doc/73647088/

69. Carsana L., Sonzogni A., Nasr A., Rossi R., Pellegrinelli A., Zerbi P., Rech R., Colombo R., Antinori S., Corbellino M., Galli M., Catena E., Tosoni A., Gianatti A., Nebuloni M. Pulmonary post-mortem findings in a large series of COVID-19 cases from Northern Italy. COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv. DOI: 10.1101/2020.04.19.20054262

70. Зайратьянц О.В., Cамсонова М.В., Михалева Л.М., Черняев А.Л., Мишнев О.Д., Крупнов Н.М. Патологическая анатомия легких при COVID-19: атлас. Москва; Рязань: Издательство ГУП РО «Рязанская областная типография», 2020. – 52 с., ил. 62

71. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Zh., Xiang J., Wang Y., Song B., Gu X., Guan L., Wei Y., Li H., Wu X., Xu J., Tu Sh., Zhang Y., Chen H., Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395: 1054–62. DOI: 10.1016/S0140-6736(20)30566-3.

72. Self W.H., Balk R.A., Grijalva C.G., Williams D.J., Zhu Y., Anderson E.J., Waterer G.W., Courtney D.M., Bramley A.M., Trabue Ch., Fakhran Sh., Blaschke A.J., Jain S., Edwards K.M., Wunderink R.G. Procalcitonin as a marker of etiology in adults hospitalized with community-acquired pneumonia (multicenter study). Clin Infect Dis 2017; 65 (2): 183-190. DOI: 10.1093/cid/cix317. PMID: 28407054

73. Grondman I., Pirvu A., Riza A., Ioana M., Mihai G., Netea M.G. Biomarkers of inflammation and the etiology of sepsis. Review Article. Biochemical Society Transactions. 2020; 48: 1–14. DOI: 10.1042/BST20190029.

74. Guan W.-J., Ni Z.-Y., Hu Y., Liang W.-H., Ou Ch.-Q., He J.-X., Liu L., Shan H., Lei Ch.-L., Hui D.S.C., Du B., Li L.-J., Zeng G., Yuen K.-Y., Chen R.-Ch., Tang Ch.-L., Wang T., Chen P.-Y., Xiang J., Li Sh.-Y., Wang J.-L., Liang Z.-J., Peng Y.-X., Wei L., Liu Y., Hu Y.-H., Peng P., Wang J.-M., Liu J.-Y., Chen Zh., Li G., Zheng Zh.-J., Qiu Sh.-Q., Luo J., Ye Ch.-J., Zhu Sh.-Y., Zhong N.-Sh., China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. New Engl J Med. 2020; 382 (18): 1708-1720. NEJM.org. DOI: 10.1056/NEJMoa2002032. PMID: 32109013

75. Lippi G., Plebani M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): A Meta-analysis. Clinica Chimica Acta. 2020; 505: 190-191. DOI: 10.1016/j.cca.2020.03.004

76. Jereb M., Kotar T. Usefulness of procalcitonin to differentiate typical from atypical community-acquired pneumonia. Wien Klin Wochenschr. 2006; Apr;118(5-6):170-4. DOI: 10.1007/s00508-006-0563-8

77. COVID-19 rapid guideline: antibiotics for pneumonia in adults in hospital. National Institute for Health and Care Excellence (NICE). NICE guideline [NG173] Published date: 01 May 2020. https://www.nice.org.uk/guidance/ng173

78. Sorbera L.A., Graul A.I., Dulsat C. Taking aim at a fast-moving target: targets to watch for SARS-CoV-2 and COVID-19. Drugs of the Future. 2020; 45 (4): 1-6 (Advanced Publication). DOI: 10.1358/dof.2020.45.4.3150676

79. Bhattacharya S., Sen N., Yiming M.T., Patel R., Parthasarathi K., Quadri S., Issekutz A.C., Bhattacharya J. High tidal volume ventilation induces proinflammatory signaling in rat lung endothelium. Am J Respir Cell Mol Biol. 2003; 28: 218–224. DOI: 10.1165/rcmb.4763.

80. Ries C., Petrides P.E. Cytokine regulation of matrix metalloproteinase activity and its regulatory dysfunction in disease. Biol Chem Hoppe Seyler. 1995; 376 (6): 345-55. PMID: 7576228

81. Nagase H. Activation mechanisms of matrix metalloproteinases. Biol Chem. 1997; 378: 151–160. PMID: 9165065

82. Bode W., Maskos K. Structural basis of the matrix metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases. Review. Biol Chem. 2003 Jun; 384 (6): 863-72. DOI: 10.1515/BC.2003.097.

83. Castro M.M., Kandasamy A.D., Youssef N., Schulz R. Matrix Metalloproteinase Inhibitor Properties of Tetracyclines: Therapeutic Potential in Cardiovascular Diseases. Pharmacol Res. 2011; 64 (6): 551-60. Epub 2011 May 31. DOI: 10.1016/j.phrs.2011.05.005.

84. Acharya M.R., Venitz J., Figg W.D. Sparreboom A. Chemically modified tetracyclines as inhibitors of matrix metalloproteinases. Drug Resistance Updates.2004; 7 (3): 195-208. DOI: 10.1016/j.drup.2004.04.002

85. Steinberg J., Fink G., Picone A., Searles B., Schiller H., Lee H.M., Nieman G. Evidence of increased matrix metalloproteinase-9 concentration in patients following cardiopulmonary bypass. J Extra Corpor Technol. 2001; 33: 218–222. PMID: 11806432

86. Lin T.C., Li C.Y., Tsai C.S., Ku C.H., Wu C.T., Wong C.S., Ho S.T. Neutrophil-mediated secretion and activation of matrix metalloproteinase-9 during cardiac surgery with cardiopulmonary bypass. Anesth Analg. 2005; 100 (6): 1554–1560. DOI: 10.1213/01.ANE.0000154307.92060.84

87. Joffs C., Gunasinghe H.R., Multani M.M., Dorman B.H., Kratz J.M., Crumbley A.J. 3rd, Crawford F.A. Jr., Spinale F.G. Cardiopulmonary bypass induces the synthesis and release of matrix metalloproteinases. Ann Thorac Surg. 2001; 71: 1518–1523. DOI: 10.1016/s0003-4975(01)02442-0

88. Zhang C., Gong W., Liu H., Guo Z., Ge S. Inhibition of matrix metalloproteinase-9 with low-dose doxycycline reduces acute lung injury induced by cardiopulmonary bypass. Int J Clin Exp Med. 2014 Dec 15; 7 (12): 4975-82. eCollection 2014. PMID: 25663995. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4307442/

89. Dalvi P.S., Singh A., Trivedi H.R., Ghanchi1 F.D., Parmar D.M., Mistry S.D. Effect of doxycycline in patients of moderate to severe chronic obstructive pulmonary disease with stable symptoms. Annals of Thoracic Medicine. 2011; 6 (4): 221-6. http://www.thoracicmedicine.org. DOI: 10.4103/1817-1737.84777

90. Doroszko A., Hurst Th.S., Polewicz D., Sawicka J., J. Fert-Bober, D.H. Johnson, G. Sawicki. Effects of MMP-9 inhibition by doxycycline on proteome of lungs in high tidal volume mechanical ventilation-induced acute lung injury. Proteome Sci. 2010; 8: 3. Published online 2010 Jan 29. DOI: 10.1186/1477-5956-8-3. PMCID: PMC2824689 PMID: 20205825 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824689/

91. Sochor M., Richter S., Schmidt A., Hempel S., Hopt U.T., Keck T. Inhibition of Matrix Metalloproteinase-9 with Doxycycline Reduces Pancreatitis-Associated Lung Injury. Digestion. 2009; 80, (2): 65–73. DOI:10.1159/000212080

92. Зырянов С.К., Голуб А.В., Козлов Р.С. Доксициклин в современной клинической практике. Клиническая микробиология и антимикробная химиотерапия. 2020; 22 (1): 21-28. DOI: 10.36488/cmac.2020.1.21-28

93. Wormser G.P., Dattwyler R.J., Shapiro E.D., Halperin J.J., Steere A.C., Klempner M.S., Krause P.J., Bakken J.S., Strle F., Stanek G., Bockenstedt L., Fish D., Dumler J.S., Nadelman R.B. The clinical assessment, treatment and prevention of Lyme disease, human granulocytic anaplasmosis and babesiosis: clinical practice guidelines by the infectious diseases society of America. Clin Infect Dis. 2006; 43 (9): 1089-1134. DOI: 10.1086/508667

94. van Zuuren E.J., Kramer S., Carter B., Graber M.A., Fedorowicz Z. Interventions for rosacea. Cochrane Database Syst Rev. 2011; 3: CD003262. DOI: 10.1002/14651858.CD003262.pub4

95. Müllegger R.R., Glatz M. Skin manifestations of lime borreliosis: diagnosis and management. Am J Clin Dermatol. 2008;9(6):355-368. DOI: 10.2165/0128071-200809060-00002

96. Torresani C., Pavesi A., Manara G.C. Clarithromycin versus doxycycline in the treatment of rosacea. Int J Dermatol. 1997; 36 (12): 938-946. DOI: 10.1046/j.1365-4362.1997.00301.x

97. Heneghan С., Aronson J., Hobbs R., Mahtani K. Rapidly managing pneumonia in older people during a pandemic. The Centre for Evidence-Based Medicine (CEBM). Oxford COVID-19 Evidence Service Team. March 16, 2020 https://www.cebm.net/covid-19/rapidly-managing-pneumonia-in-older-people-during-a-pandemic/

98. Dalvi P. S, Singh A., Trivedi H. R, Ghanchi F. D, Parmar D.M, Mistry S.D. Effect of Doxycycline in Patients of Moderate to Severe Chronic Obstructive Pulmonary Disease With Stable Symptoms. Ann Thorac Med 2011 Oct;6(4):221-6. DOI: 10.4103/1817-1737.84777

99. van der Waaij D. Colonization Resistance of the Digestive Tract - Mechanism and Clinical Consequences. Nahrung 1987;31(5-6):507-17 DOI: 10.1002/food.19870310551

100. Vollaard E.J., Clasener H.A..L, Van Griethuysen A.J.A., Janssen A.J.H.M., Sanders-Reimers A.H.J., Muller N.F., Huige P.J. Influence of cefaclor, phenethicillin, co-trimoxazole and doxycycline on colonization resistance in healthy volunteers. J Antimicrob Chemother. 1988;22(5):747–758. DOI: 10.1093/jac/22.5.747.

101. Gorbach S.L., Barza M., Giuliano M., Jacobus N.V. Colonization resistance of the human intestinal microflora: testing the hypothesis in normal volunteers. Eur J Clin Microbiol Infect Dis. 1988 Feb;7(1):98-102. DOI: 10.1007/BF0196219

102. Vollaard E.J., Clasener H.A., van Saene H.K., Muller N.F. Effect on colonization resistance: an important criterion in selecting antibiotics. Drug Intel. and Clin. Pharm. 1990 Jan;24(1):60-6. DOI: 10.1177/106002809002400113


Для цитирования:


Белобородова Н.В., Зуев Е.В., Замятин М.Н., Гусаров В.Г. Этиотропная терапия COVID-19: критический анализ и перспективы. Общая реаниматология. 0;. https://doi.org/10.15360/1813-9779-2020-4-0-1

For citation:


Beloborodova N.V., Zuev E.V., Zamyatin M.N., Gusarov V.G. Causal Therapy of COVID-19: Critical Review and Prospects. General Reanimatology. 0;. (In Russ.) https://doi.org/10.15360/1813-9779-2020-4-0-1

Просмотров: 1001


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)