Preview

General Reanimatology

Advanced search

Continuous Flow Ventilatory Support: Physical, Mathematical, and Clinical Prerequisites and Principles

https://doi.org/10.15360/1813-9779-2006-4-13-21

Abstract

The authors describe the theoretical bases of a new ventilatory support procedure that is called by the authors as continuous flow ventilatory support (CFVS). In the theoretical part they provide evidence for this procedure of ventilatory support and explain the basic mathematical and physiological principles of the described procedure and artificial ventilation and compare the possibilities of using CFVS with a multi-jet insufflation catheter (VIK®) versus a terminal orifice one (JTO). Physical and mathematical analyses on a model of the artificial lung in the static and dynamic modes revealed that there was a difference in the values of the maximum inspiratory pressure and positive end-expiratory pressure (PEEP), which was greater with the terminal orifice catheter. There was evidence that the use of CFVS with a multi-jet insufflation catheter or a terminal one-orifice one presented a risk of barotrauma and made the value of dynamic PEEP with a gas flow of as high as 20—26 l/min minimal when CFVS. The latter with a multi-jet insufflation catheter is most suitable when higher gas flows Qin above 25—28 l/min are applied. In conclusion, the authors consider that CFVS with a multi-jet insufflation catheter is technically more effective and substantially higher gas flows may be used as in the application of a terminal one-orifice catheter without a risk of elevated airway pressure and without increased ventilation performance on expiration.

About the Authors

Pavol Török
Department of Anesthesiology and Intensive Medicine, Hospital & Polyclinic, VranovonTople


Peter Сandík
Academician Derer Clinical of Anesthesiology and Intensive Medicine, Faculty Hospital & Polyclinic, Bratislava


Jan Salantay
Academician Derer Clinical of Anesthesiology and Intensive Medicine, Faculty Hospital & Polyclinic, Bratislava


Milan Majek
Academician Derer Clinical of Anesthesiology and Intensive Medicine, Faculty Hospital & Polyclinic, Bratislava


Jan Kolnik
Department of Anesthesiological and Respiratory Equipment Developments, Chirana, Stara Tura


References

1. Brychta O. Заключения исследовательской задачи «Высокочастотная вентиляция». Trenсín, Konštrukta 1983. 112.

2. Török P. Высокочастотная струйная вентиляция маской. Свидетельство о новом лечебном методе № 3/1989. Bratislava, MZ SR 1989.

3. Török P. Возможности клинического применения высокочастотной струйной вентиляции маской. Заключительный отчет исследовательской задачи 46/04. NsP Vranov nad Toplou. 1992.

4. Török P. Вентиляционная поддержка непрерывным потоком с помощью многоструйного катетера для лечения дыхательной недостаточности. Свидетельство о новом лечебном методе № OPLS 1015/97. Bratislava, MZ SR; 1997.

5. Belghith M., Fierobe L., Brunet F. Is tracheal gas insufflation an alternative to extrapulmonary gas exchange in ARDS? Chest, 1995; 107: 1416—1419.

6. Brampton W., Young J. D. Lung volume, pressure, flow, and density relationships during continuous flow ventilation in dogs. J. Appl. Physiol. 1993; 74: 197—202.

7. MacIntyre N. R. Strategies to minimize alveolar stretch injury during mechanical ventilation. In.: Vicent J. L. (ed.): Yearbook of intensive care and emergency medicine; 5. Berlin: Springer-Verlag; 1996. 389—397.

8. Slutsky A. S. Nonconventional methods of ventilation. Am. Rev. Resp. Dis. 1988; 140: 175—183.

9. Stresseman E. Votteri B. A., Satler F. P. Washout of anatomical dead space for alveolar hypoventilation. Respiration, 1969; 26: 425—434.

10. Crespo A. S., Cavralho A. F. Intratracheal gas insufflation. Resp. Technol. Internat. 1996; 5: 36—37.

11. Hurewicz A. N., Bergofky E. H., Vomero E. Airway insufflation. Increasing flow rates progressively reduced dead space in respiratory failure. Am. Rev. Respir. Dis. 1991; 144: 1229—1233.


Review

For citations:


Török P., Сandík P., Salantay J., Majek M., Kolnik J. Continuous Flow Ventilatory Support: Physical, Mathematical, and Clinical Prerequisites and Principles. General Reanimatology. 2006;2(4):13-21. (In Russ.) https://doi.org/10.15360/1813-9779-2006-4-13-21

Views: 1220


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)