Preview

General Reanimatology

Advanced search

Continuous Flow Ventilatory Support (Clinical Experience)

https://doi.org/10.15360/1813-9779-2006-4-67-75

Abstract

Background. The world literature contains no reports on the clinical application of continuous flow ventilatory support by an insufflation catheter. Despite the use of different forms of ventilatory support, disconnection of patients from artificial ventilation is unsuccessful in 10—30% of cases despite the fact that the clinical and biochemical criteria are met.

Objective: to discuss the efficiency of the new ventilation regime — continuous flow ventilatory support in the clinical setting.

Methods: continuous flow ventilatory support with an original licensed multi-jet insufflation catheter or a terminal one-orifice catheter nasally inserted into the trachea was applied to 70 patients. It was used in a subgroup of 64 patients with chronic obstructive lung disease (COLD) due to the occurrence of global respiratory insufficiency caused by infectious complications and in a group of 6 patients as a ventilatory regime for their disconnection from long-term artificial ventilation, whose disconnection other ventilatory regimens being used were unsuccessful.

Results. None patient with COLD should be intubated, and just 30 minutes after the initiation of ventilatory support with a multi-jet catheter, there were decreases in the mean respiration rate from 33±2.8 to 27±2.5 cycles/min and in paCo2 from 11.9±1.7 to 10.8±1.6 kPa and an increase in paCo2 from 5.7±1.1 to 6.8±1.3 kPa at FiO2 =0.3. Within 24 hours after the initiation of ventilatory support, blood gas levels changed in response to the values typical of partial respiratory insufficiency. The spontaneous ventilation rate decreased to 20±2.2, paCO2 reduced to 6.4±1.2  kPa  and  pO2 continuously  increased  up  to  the  value  8.9±1.4  kPa  (FiO2 =0.3)  at  hour  24  of  ventilatory  support. Ventilatory support lasted an average of 5 days. Statistical comparison of the study parameters showed a significant improvement (p<0.05) just 6 hours after ventilatory support and a marked improvement of the parameters (p<0.01) following 72 hours. In the other group of patients, continuous flow ventilatory support was used due to failing disconnection of the patients from long-term artificial ventilation. After extubation and 30 minutes after the initiation of continuous flow ventilatory support, the ventilation rated decreased to 27±2.5 cycles/min, there was a continuous reduction in paCO2 to 3.9±0.9 kPa as a manifestation of hyperventilation that had been likely to be induced by a continuous decrease of paCO2 to 8.8±1.4 kPa. Only 60 minutes after the initiation of ventilatory support, with the equal ventilation rate, the values of blood gases (paO2 =9.9±1.5 kPa, paCO2=5.2±1.1 kPa) increased, as did VT (0.38±0.30), which permitted one to proceed with continuous flow ventilatory support that could be interrupted following 48 hours.

Conclusion. The findings lead to the conclusion that continuous flow ventilatory support is an effective ventilation regimen that is applicable to patients with chronic obstructive lung disease in global respiratory insufficiency and makes it possible to overcome the period of, for example, infectious complications without  intubation  and  artificial  ventilation.  It  may  also  be  used  as  a  non-invasive  ventilation  regime  in  the  disconnection  of patients from long-term artificial ventilation. Its application in acute respiratory failure (acute respiratory failure, acute respiratory distress syndrome) requires further prospective studies.

About the Authors

Pavol Török
Department of Anesthesiology and Intensive Medicine, Hospital & Polyclinic, Vranov-on-Tople


Peter Сandík
Academician Derer Clinical of Anesthesiology and Intensive Medicine, Faculty Hospital & Polyclinic, Bratislava


Ján Šalantay
Academician Derer Clinical of Anesthesiology and Intensive Medicine, Faculty Hospital & Polyclinic, Bratislava


Milan Májek
Academician Derer Clinical of Anesthesiology and Intensive Medicine, Faculty Hospital & Polyclinic, Bratislava


Ján Kolník
Department of Anesthesiological and Respiratory Equipment Developments, Chirana, Stara Tura


References

1. Brochard L., Lemaire F. Weaning techniques and factors associated with weaning difficulties. J. Drug. Dev. 1991; 4(Suppl. 3): 89—92.

2. Whitelaw W. A., Derene J. P., Milic9Emili J. Airway occlusion pressure. J. Appl. Physiol. 1993; 74: 1475—1483.

3. Manthous C. A. The respiratory rate: tidal volume ratio as a predictor of weaning outcome. Crit. Care. Inter. 1995; 11—12: 16—17.

4. Alberti A., Gullo F., Fongaro A. et al. P0,1 is useful parameter in setting the level of pressure support ventilation. Int. Care. Med. 1995; 21: 547—553.

5. Laubscher T. P., Frutiger A., Fanconi S., Brunner J. X. The automatic selection of ventilation parameters during the initial phase of mechanical ventilation. Int. Care. Med. 1996; 22: 199—207.

6. Laubscher T. P., Frutiger A., Fanconi H. et al. Automatic selection tidal volume, respiratory frequency and minute ventilation in intubated ICU patients as startup procedure for closed-loop controlled ventilation. Int. J. Clin. Monit. Comp. 1994; 11: 19—30.

7. Török P., Májek M., Kolník J. Вентиляционная поддержка континуальным потоком многоструйным инсуфляционным катетром. Физические, математические и клинические предпосылки и принципы. Brat. Lek. Listy 1999.

8. Májek M., Török P. Вентиляционная поддержка континуальным потоком — клинический опыт. BLL 2000; 2: 85—92.

9. Török P. Вентиляционная поддержка континуальным потоком с помощью многоструйного инсуффляционного катетера для лечения дыхательной недостаточности. Свидетельство о новом лечебном методе № OPLS 1015/97. Bratislava, MZ SR 1997.

10. Vassilakopoulos T., Zakynthinos S., Roussos C. The pathofysiology of weaning failure. In.: Vicent V. L. (ed.): Year book of intensive care and emergency medicine; 5. Berlin: Springer-Verlag; 1998. 489—504.

11. Goldstone J. C., Green M., Moxham J. Minimum relaxation rate of the diaphragm during weaning from mechanical ventilation. Thorax 1994; 49: 54—60.

12. Bigland9Ritchie B., Donovan E. F., Roussos Ch. Conduction velocity and EMG power spectrum changes in fatigue of sustained maximal efforts. J. Appl. Physiol. 1981; 51: 1300—1305.

13. Cohen C. A., Zagelbaum G., Roussos Ch., Macklem D. T. Clinical manifestation of inspiratory muscle fatigue. Am. J. Med. 1982; 73: 308—316.

14. Epstein S. K. Etiology of extubation failure and the predictive value of the rapid shallow breathing index. Am. J. Res. Crit. Care Med. 1995; 152: 545—549.

15. Conti G., Antonelli M., Gaspetro A. Non-Invasive ventilation. In.: Vicent J. L.(ed.): Yearbook of intensive care and emergency medicine; 5. Berlin. Springer-Verlag; 1997: 921.

16. Gattinoni L., Bombino M., Pelosi P. et al. Lung structure and function in different stages of severe adult respiratory distress syndrome. J. Amer. Med. Assoc. 1994; 271: 1772—1779.

17. Kirkpatrick A. W., Meade M. O., Stewart T. E. Lung protective ventilatory strategies in ARDS. In.: Vicent J. L.(ed.): Yearbook of intensive care and emergency medicine; 5. Berlin: Springer-Verlag; 1996. 397—398.

18. Chiche J. D. Inflamatory consequences of high stretch lung injury. In.: Vicent J. L. (ed.): Yearbook of intensive care and emergency medicine; 5. Berlin: Springer-Verlag; 1996. 443—456.

19. MacIntyre N. R. Strategies to minimize alveolar stretch injury during mechanical ventilation. In.: Vicent J. L. (ed.): Yearbook of intensive care and emergency medicine; 5. Berlin: Springer-Verlag; 1996. 389—397.

20. Brochard L., Mancebo J., Wysocki M. Efficacy of non-invasive ventilation for treatment of acute exacerbations of chronic obstructive pulmonary disease. N. Engl. J. Med. 1995; 333: 817—822.

21. Bott J., Carroll M. P., Conway J. H. Randomized controlled trial of nasal ventilation in acute ventilatory failure due to chronic obstructive airways disease. Lancet 1993; 341: 1555—1558.

22. Meduri G. U., Conoscewnti C. C., Menashe P., Nair S. Non-invasive face mask ventilation in patients with acute respiratory failure. Chest 1989; 95: 865—870.

23. Lemaire F., Teboul J. L., Cinotti L. et al. Acute left ventricular dysfunction during unsuccesful weaning from mechanical ventilation. Anesthesiology, 1988; 69.

24. Räsänen J., Nikki P., Heikkila J. Acute myocardial infarction complicated by respiratory failure. The effects of mechanical ventilation. Chest, 1984; 85: 21—28.

25. Hurford W. E., Lynch K. E., Strauss W. H. et al. Myocardial perfusion as assessed by thalium 201 scintigraphy during the dicontinuation of mechanical ventilation in ventilator dependent patients. Anesthesiology, 1991; 74: 1007—1016.

26. Stretz R. W., Hubmayr R. D. Tidal volume maintenance during weaning with pressure support. Am. J. Resp. Crit. Care. Med. 1995; 152: 1034—1040.


Review

For citations:


Török P., Сandík P., Šalantay J., Májek M., Kolník J. Continuous Flow Ventilatory Support (Clinical Experience). General Reanimatology. 2006;2(4):67-75. (In Russ.) https://doi.org/10.15360/1813-9779-2006-4-67-75

Views: 1013


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)