Morphological Characteristics of the Lung during Lipopolysaccharide and Perfluorane Inhalation
https://doi.org/10.15360/1813-9779-2015-1-6-13
Abstract
The use of perfluorane for the cytoprotection of lung structures in gram-negative lung infections has been inadequately studied. Objective: to experimentally reveal the pattern of morphological changes in the lung during combined inhalation of lipopolysaccharide (LPS) and perfluorane that has cytoprotective properties. Materials and methods. The experiment was carried out on 35 outbred male albino rats weighing 320—350 g. The experimental animals were allocated to groups: 1) one-hour ventilation (controls) (n=5); 2) inhaled LPS 1.0 mg (n=10); 3) inhaled perfluorane 1.0 ml (n=10); 4) inhaled LPS 1.0 mg and then inhaled perfluorane 1.0 ml (n=10). Results. According to morphological findings, Group 1 (controls) was found to have no signs of lung structural changes. Group 2 (inhaled LPS) was noted to have signs of characteristic LPS-induced lung injury. Group 3 (inhaled perfluorane) showed complexes of macrophages with vacuolated cytoplasm (perfluorophages) in the bronchial lumen 3 hours after inhaled perfluorane administration. In Group 4, inhaled perfluorane exerted a cytoprotective effect: the degree of LPS- induced morphological changes in the lung was much lower than that in Group 2. Conclusion. The experimental model of LPS-induced lung injury indicated that LPS inhalation led to alveolar and bronchial epithelial damage, interstitial and alveolar edema, and obvious cell infiltration at the expense of lymphocytes, segmented leukocytes, and macrophages. This model showed that inhaled perfluorane reduced the signs of alveolar and bronchial epithelial damage and the degree of interstitial and alveolar edema. This supports clinical findings and offers possibilities of using inhaled perfluorane in resuscitation.
About the Authors
A. M. GolubevRussian Federation
A. N. Kuzovlev
Russian Federation
D. V. Sundukov
Russian Federation
M. A. Golubev
Russian Federation
References
1. Мороз В.В., Голубев А.М., Кузовлев А.Н., Писарев В.М., Шабанов А.К., Голубев М.А. Сурфактантный протеин D – биомаркер острого респираторного дистресс-синдрома. Общая реаниматология. 2013; 9 (4): 11—17. http://dx.doi.org/10.15360/1813-9779-2013-4-11
2. Хубутия М.Ш., Шабанов А.К., Булава Г.В., Дорфман А.Г., Зайнудинов З.М., Скулачев М.В., Кузовлев А.Н., Гребенчиков О.А., Сергеев А.А., Шпитонков М.И., Мальцев Г.Ю. Окислительный дистресс у пострадавших с тяжелой сочетанной травмой. Общая реаниматология. 2014; 10 (2): 23—30. http://dx.doi.org/10.15360/1813-9779-2014-2-23-30
3. Яковлев А.Ю., Гущина Н.Н., Ниязматов А.А., Зайцев Р.М., Голубцова Е.Ю., Рябикова М.А. Ранняя оценка эффективности антибактериальной терапии нозокомиальной пневмонии путем количественного определения липополисахарида. Общая реаниматология. 2013; 9 (6): 45—52. http://dx.doi.org/10.15360/1813-9779-2013-6-45
4. Мороз В.В., Голубев А.М., Марченков Ю.В., Власенко А.В., Кузовлев А.Н. Диагностика острого респираторного дистресс-синдрома при нозокомиальной пневмонии. Методические рекомендации. М.: НИИОР РАМН; 2011.
5. Кузовлев А.Н., Мороз В.В., Голубев А.М., Половников С.Г. Ингаляционные антибиотики в лечении тяжелой нозокомиальной пневмонии. Общая реаниматология. 2013; 9 (6): 61—70. http://dx.doi.org/10.15360/1813-9779-2013-6-61
6. Мороз В.В., Черныш А.М., Козлова Е.К., Сергунова В.А., Гудкова О.Е., Федорова М.С., Кирсанова А.К., Новодержкина И.С. Нарушения наноструктуры мембран эритроцитов при острой кровопотере и их коррекция перфторуглеродной эмульсией. Общая реаниматология. 2011; 7 (2): 5—9. http://dx.doi.org/10.15360/1813-9779-2011-2-5
7. Sender V., Stamme C. Lung cell-specific modulation of LPS-induced TLR4 receptor and adaptor localization. Commun. Integr. Biol. 2014; 7: e29053. http://dx.doi.org/10.4161/cib.29053. PMID: 25136402
8. Hou S., Ding H., Ly Q., Yin X., Song J., Landen N.X., Fan H. Therapeutic effect of intravenous infusion of perfluorocarbon emulsion on LPS- induced acute lung injury. PLos One. 2014; 9 (1): e87826. http://dx.doi.org/10.1371/journal.pone.0087826. PMID: 24489970
9. Yuan Q., Jiang Y.W., Fang Q.H. Improving effect of Sivelestat on lipopolysaccharide-induced lung injury in rats. APMIS. 2014; 122 (9): 810—817. http://dx.doi.org/10.1111/apm.12222. PMID: 24484066
10. Zhao X.W., Zhang J.P., Wang X.G., Ma H.J., Xie J.H., Liu Y.N. Effects of aerosolized perfluorocarbon on gas exchange, respiratory mechanics and hemodynamics in a swine model of acute respiratory distress syndrome. Zhonghua Jie He He Hu Xi Za Zhi. 2006; 29 (2): 104—108. PMID: 16677452
11. Wang X., Zhang J., Li X., Liu Y., Yang H., Zhao X., Xie L., Yin L. Sustained improvement of gas exchange and lung mechanics by vaporized perfluorocarbon inhalation in piglet acute lung injury model. Clin. Respir. J. 2014; 8 (2): 160—166. http://dx.doi.org/10.1111/crj.12053. PMID: 24028088
12. Мороз В.В., Остапченко Д.А., Власенко А.В., Осипов П.Ю., Герасимов Л.В. Эндотрахеальное применение перфторана в условиях ИВЛ у больных с острым респираторным дистресс-синдромом. Общая реаниматология. 2005; 1 (2): 5—11. http://dx.doi.org/10.15360/1813-9779-2005-2-5-11
13. Nakstad B., Wolfson M.R., Shaffer T.H., Kähler H., Lindemann R., Fugelseth D., Lyberg T. Perfluorochemical liquids modulate cell-mediated inflammatory responses. Crit. Care Med. 2001; 29 (9): 1731—1737. http://dx.doi.org/10.1097/00003246-200109000-00013. PMID: 11546973
14. Koch T., Ragaller M., Haufe M., Hofer A., Grosser M., Albrecht D.M., Kotzsch M., Luther T. Perfluorohexane attenuates proinflammatory and procoagulatory response of activated monocytes and alveolar macrophages. Anesthesiology. 2001; 94 (1): 101—109. http://dx.doi.org/10.1097/00000542-200101000-00020. PMID: 11135729
15. Thomassen M.J., Buhrow L.T., Wiedemann H.P. Perflubron decreases inflammatory cytokine production by human alveolar macrophages. Crit. Care Med. 1997; 25 (12): 2045–2047. http://dx.doi.org/10.1097/00003246-199712000-00023. PMID: 9403756
16. Gale S.C., Gorman G.D., Copeland J.G., McDonagh P.F. Perflubron emulsion prevents PMN activation and improves myocardial functional recovery after cold ischemia and reperfusion. J. Surg. Res. 2007; 138 (1): 135–140. PMID: 17173933
17. Chang H., Kuo F.C., Lai Y.S., Chou T.C. Inhibition of inflammatory responses by FC-77, a perfluorochemical, in lipopolysaccharide-treated RAW 264.7 macrophages. Intensive Care Med. 2005; 31 (7): 977–984. http://dx.doi.org/10.1007/s00134-005-2652-y. PMID: 15931525
18. Woods C.M., Neslund G., Kornbrust E., Flaim S.F. Perflubron attenuates neutrophil adhesion to activated endothelial cells in vitro. Am. J. Physiol. Lung Cell Mol. Physiol. 2000; 278 (5): L1008–L1017. PMID: 10781432
19. Baba A., Kim Y.K., Zhang H., Liu M., Slutsky A.S. Perfluorocarbon blocks tumor necrosis factor-alpha-induced interleukin-8 release from alveolar epithelial cells in vitro. Crit. Care Med. 2000; 28 (4): 1113–1118. PMID: 10809292
20. Schoof E., von der Hardt K., Kandler M.A., Abendroth F., Papadopoulos T., Rascher W., Dötsch J. Aerosolized perfluorocarbon reduces adhesion molecule gene expression and neutrophil sequestration in acute respiratory distress. Eur. J. Pharmacol. 2002; 457 (2-3): 195–200. http://dx.doi.org/10.1016/S0014-2999(02)02665-1. PMID: 12464366
Review
For citations:
Golubev A.M., Kuzovlev A.N., Sundukov D.V., Golubev M.A. Morphological Characteristics of the Lung during Lipopolysaccharide and Perfluorane Inhalation. General Reanimatology. 2015;11(1):6-13. https://doi.org/10.15360/1813-9779-2015-1-6-13