Effect of Perfluorane on the Amplitude-Frequency Spectrum of Fluctuations in Cerebral Blood Flow in Hemorrhagic Hypotension and During the Reperfusion Period
https://doi.org/10.15360/1813-9779-2015-4-14-22
Abstract
Objective: to use laser Doppler flowmetry (LDF) to investigate the effect of perfluorane on the time course of microhemocirculato ry changes in the rat pial vessels in acute blood loss and after autohemotransfusion.
Material and methods. Experiments were car ried out on 31 outbred male rats weighing 300—400 g under anesthesia with intraperitoneal Nembutal 45 mg/kg. The caudal artery was catheterized to measure blood pressure (BP), to sample and reinfuse blood, and to administer infusion solutions. LDF (ЛАКК 02 device, LAZMA, Russia) was used to record blood flow in the pial vessels of the left parietal region (the center coordinates were 3 mm caudal to bregma and 2 mm left of the sagittal suture. A volumefixed acute blood loss model was applied. The goal amount of blood loss was 30% of the circulating blood volume. At 10 minutes after blood sampling, the animals were administered 0.9% NaCl solution (physiologic saline (PS), n=15) or perfluorane (PF), n=16)) in a dose of 3 ml/kg body weight. At 60 minutes following blood sampling, autohemotransfusion was used, after which there was a 60min reperfusion period. The investigators analyzed LDF readings and determined the following indicators: microcirculation index; the maximum amplitudes of blood flow fluctuations in the endothelial, neurogenic, and myogenic frequency ranges by a wavelet analysis. The data were statistically processed using Statistica 7.0 software.
Results. Hypovolemia caused a more than 50% reduction in BP; moreover, blood flow in the pial vessels decreased by less than 20% of its baseline level (p<0.05). In the same period, there was an increase in the amplitude of flux motions mainly in the neurogenic (NA) frequency. The differences in microcirculatory parameters between the PS or PF groups were in the retention of higher NA in the PS group throughout hypovolemia; at the same time the groups did not differ in the arterial blood levels of the index of perfusion (IP), рСО2, and lactate. After blood reinfusion and BP elevation, the examined microcirculatory parameters did not dif fer between the groups and were similar to the baseline values, suggesting that there were compensatory changes in the amplitude of flux motions in response to evolving blood loss.
Conclusion. The findings suggest that PF versus PS leads to the reduced tension of compensatory mechanisms for cerebral blood flow regulation at a risk for hypoxia during hypovolemia.
About the Authors
I. A. RyzhkovRussian Federation
25, Petrovka St., Build. 2, Moscow 107031
Yu. V. Zarzhetsky
Russian Federation
25, Petrovka St., Build. 2, Moscow 107031
I. S. Novoderzhkina
Russian Federation
25, Petrovka St., Build. 2, Moscow 107031
References
1. Tuor U.I., Farrar J.K. Pial vessel caliber and cerebral blood flow during hemorrhage and hypercapnia in the rabbit. Am. J. Physiol. 1984; 247 (1 Pt 2): 4051. PMID: 6742212
2. Tonnesen J., Pryds A., Larsen E.H., Paulson O.B., Hauerberg J., Knudsen G.M. Laser Doppler flowmetry is valid for measurement of cerebral blood flow autoregulation lower limit in rats. Exp. Physiol. 2005; 90 (3): 349355. http://dx.doi.org/10.1113/expphysiol.2004.029512. PMID: 15653714
3. Bor-Seng-Shu E., Kita W.S., Figueiredo E.G., Paiva W.S., Fonoff E.T., Teixeira M.J., Panerai R.B. Cerebral hemodynamics: concepts of clinical importance. Arq. Neuropsiquiatr. 2012; 70 (5): 352356. PMID: 22618788
4. Morita Y., Hardebo J.E., Bouskela E. Influence of cerebrovascular sympathetic, parasympathetic, and sensory nerves on autoregulation and spontaneous vasomotion. Acta Physiol. Scand. 1995; 154 (2): 121130. http://dx.doi.org/10.1111/j.17481716.1995.tb09894.x. PMID: 7572208
5. Aleksandrin V.V. Dinamika veivletspektra pri autoregulyatsii mozgovogo krovotoka. [Time course of changes in the wavelet spectrum during autoregulation of cerebral blood flow]. Regionarnoe Krovoobrashchenie i Mikrotsirkulyatsiya. 2013; 12 (3): 4752. [In Russ.]
6. Ryzhkov I.A., Kirsanova A.K., Zarzhetsky Yu.V. Amplitudnochastotnyi spektr kolebanii mozgovogo krovotoka pri gemorragicheskom shoke. Obshchaya Reanimatologiya. [The amplitude and frequency spectrum of cerebral blood flow fluctuations in hemorrhagic shock. General Reanimatology]. 2014; 10 (2): 617. http://dx.doi.org/10.15360/1813-9779-2014-2-6-17. [In Russ.]
7. Moroz V.V., Krylov N.L., Ivanitsky G.R., Kaidash A.N., Onishchenko N.A., Simanov V.A., Vorobyev S.I. Primenenie perftorana v klinicheskoi meditsine. [The use of perftoran in clinical medicine]. Anesteziologiya i Reanimatologiya. 1995; 6: 1217. PMID: 8713413. [In Russ.]
8. Sukhorukov V.P., Ragimov A.A., Pushkin S.Yu., Maslennikov I.A., Bondar O.G. Perftoran perftoruglerodnyi krovezamenitel s gazotransportnoi funktsiei. Posobie dlya vrachei. 2e izd. [Perfluorane is a perfluorocarbon gas transporting blood substitute. A manual for physicians. 2nd ed.]. Moscow; 2008: 78. [In Russ.]
9. Moroz V.V., Novoderzhkina I.S., Antoshina E.M., Afanasyev A.V. Vliyanie perftorana na morfologiyu eritrotsita pri ostroi krovopotere. Obshchaya Reanimatologiya. [Effect of perfluoran on the morphology of a red blood cell in acute blood loss. General Reanimatology]. 2013; 9 (5): 5–10. http://dx.doi.org/10.15360/1813-9779-2013-5-5. [In Russ.]
10. Moroz V.V., Novoderzhkina I.S., Antoshina E.M., Afanasyev A.V., Ryzhkov I.A., Zarzhetsky Yu.V. Korrektsiya poikilotsitoza i biokhimicheskikh pokazatelei krovi pri ostroi krovopotere. Obshchaya Reanimatologiya. [Correction of poikylocytosis and blood biochemical indicators in acute blood loss. General Reanimatology]. 2015; 11 (3): 6-15. http://dx.doi.org/10.15360/1813-9779-2015-3-6-15. [In Russ.]
11. Moroz V.V., Golubev A.M., Kozlova E.K., Afanasyev A.V., Gudkova O.E., Novoderzhkina I.S., Marchenkov Yu.V., Kuzovlev A.N., Zarzhetsky Yu.V., Kostin A.I., Volkov D.P., Yakovlev V.N. Dinamika morfologicheskikh izmenenii eritrotsitov i biokhimicheskikh pokazatelei konservirovannoi tselnoi krovi v razlichnye sroki khraneniya. Obshchaya Reanimatologiya. [Time course of morphological changes in red blood cells and stored whole blood biochemical parameters in different storage periods. General Reanimatology]. 2013; 9 (1): 5–13. http://dx.doi.org/10.15360/1813-9779-2013-1-5. [In Russ.]
12. Aleksandrin V.V., Kozhura V.L., Novoderzhkina I.S., Moroz V.V. Rannie postishemicheskie narusheniya mozgovogo krovotoka i ikh korrektsiya perftoranom. Obshchaya Reanimatologiya. [Early postischemic cerebral circulatory disorders and their correction with perfluorane. General Reanimatology]. 2006; 2 (3): 1217. http://dx.doi.org/10.15360/1813-9779-2006-3-12-17. [In Russ.]
13. Lubnin A.Yu., Shmigelsky A.V., Moshkin A.V. Primenenie perftorana v kachestve gemodilyutanta u neirokhirurgicheskikh bolnykh. V kn.: Ivanitsky G.R., Moroz V.V. (red.). Perftororganicheskie soedineniya v biologii i meditsine. [Use of perfluorane as a blood diluent during deep isovolemic hemodilution in neurosurgical patients. In: Ivanitsky G.R., Moroz V.V. (eds.). Organic perfluorane compounds in biology and medicine]. Pushchino; 1999: 3750. [In Russ.]
14. Krupatkin A.I., Sidorov V.V. Lazernaya dopplerovskaya floumetriya mikrotsirkulyatsii krovi. Rukovodstvo dlya vrachei. [Laser Doppler flowmetry of blood microcirculation. A manual for physicians]. Moscow: Meditsina Publishers; 2005: 256. [In Russ.]
15. Kozlov V.I., Azizov G.A., Gurova O.A., Litvin F.B. Lazernaya dopplerovskaya floumetriya v otsenke sostoyaniya i rasstroistv mikrotsirkulyatsii krovi. Metodicheskoe posobie dlya vrachei. [Laser Doppler flowmetry in the evaluation of the status of blood microcirculation and its disorders. Guidance manual for physicians]. Moscow; 2012: 32. [In Russ.]
16. Li Z., Tam E.W., Kwan M.P., Mak A.F., Lo S.C., Leung M.C. Effects of prolonged surface pressure on the skin blood flowmotions in anaesthetized rats—an assessment by spectral analysis of laser Doppler flowmetry signals. Phys. Med. Biol. 2006; 51 (10): 26812694. http://dx.doi.org/10.1088/00319155/51/10/020. PMID: 16675876
17. Aleksandrin V.V. Veivletanaliz mozgovogo krovotoka u krys. [Wavelet analysis in rat brain blood flow]. Regionarnoe Krovoobrashchenie i Mikrotsirkulyatsiya. 2010; 9 (4): 6366. [In Russ.]
18. Fülöp A., Turóczi Z., Garbaisz D., Harsányi L., Szijártó A. Experimental models of hemorrhagic shock: a review. Eur. Surg. Res. 2013; 50 (2): 57-70. http://dx.doi.org/10.1159/000348808. PMID: 23615606
19. Wan Z., Sun S., Ristagno G., Weil V.H., Tang W. The cerebral microcirculation is protected during experimental hemorrhagic shock. Crit. Care Med. 2010; 38 (3): 928932. http://dx.doi.org/ 10.1097/CCM.0b013e3181cd100c. PMID: 20068466
20. Karkishchenko N.N., Grachev S.V. Rukovodsto po laboratornym zhivotnym i alternativnym modelyam v biomeditsinskikh issledovaniyakh. [A handbook on laboratory animals and alternative models in biomedical studies]. Moscow: Profil–2S; 2010: 358. [In Russ.]
21. Gustafsson U., Wårdell K., Nilsson G.E., Lewis D.H. Vasomotion in rat skeletal muscle induced by hemorrhage as recorded by laser-Doppler flowmetry. Microvasc. Res. 1991; 42 (2): 224228. http://dx.doi.org/10.1016/00262862(91)90090X. PMID: 1943837
22. Vollmar B., Preissler G., Menger M.D. Hemorrhagic hypotension induces arteriolar vasomotion and intermittent capillary perfusion in rat pancreas. Am. J. Physiol. 1994; 267 (5 Pt 2): H1936H1940. PMID: 7977824
23. MoritaTsuzuki Y., Bouskela E., Hardebo J.E. Vasomotion in the rat cerebral microcirculation recorded by laserDoppler flowmetry. Acta-Physiol. Scand. 1992; 146 (4): 431439. http://dx.doi.org/10.1111/j.17481716.1992.tb09444.x. PMID: 1492561
24. Goldman D., Popel A.S. A computational study of the effect of vasomotion on oxygen transport from capillary networks. J. Theor. Biol. 2001; 209 (2): 189199. http://dx.doi.org/10.1006/jtbi.2000.2254. PMID: 11401461
25. Sakurai T., Terui N. Effects of sympathetically induced vasomotion on tissuecapillary fluid exchange. Am. J. Physiol. Heart Circ. Physiol. 2006; 291 (4): H1761H1767. http://dx.doi.org/10.1152/ajpheart.00280. 2006. PMID: 16731646
26. Thorn C.T., Kyte H., Slaff D.W., Shore A.C. An association between vasomotion and oxygen extraction. J. Physiol. Heart Circ. 2011; 301 (2): 442449. http://dx.doi.org/10.1152/ajpheart.01316.2010. PMID: 21602466
Review
For citations:
Ryzhkov I.A., Zarzhetsky Yu.V., Novoderzhkina I.S. Effect of Perfluorane on the Amplitude-Frequency Spectrum of Fluctuations in Cerebral Blood Flow in Hemorrhagic Hypotension and During the Reperfusion Period. General Reanimatology. 2015;11(4):14-22. https://doi.org/10.15360/1813-9779-2015-4-14-22