NEUROPROTECTIVE ROLE OF BASIC FIBROBLAST GROWTH FACTOR IN ISCHEMIC BRAIN LESION: A REVIEW
https://doi.org/10.15360/1813-9779-2015-6-48-60
Abstract
The review deals with basic fibroblast growth factor (bFGF), one of the most known representatives of the family of neutrotrophic factors. It discusses its function in the central nervous system in health and disease, some mechanisms of neuroprotective action, the therapeutic potential of bFGF for the treatment of functional and structural disorders of the nervous system in brain ischemia of different etiologies, and in neurodegenerative diseases. Alternative routes for delivery of this protein to injured cerebral regions are considered.
About the Authors
I. V. OstrovaRussian Federation
25, Petrovka St., Build. 2, Moscow 107031, Russia
M. Sh. Avrushchenko
Russian Federation
25, Petrovka St., Build. 2, Moscow 107031, Russia
References
1. Popugaev K.A., Savin I.A., Oshorov A.V. Novye aspekty reanimatologii v nevrologii i neirokhirurgii. Obshchaya Reanimatologiya. [New aspects of resuscitation in neurology and neurosurgery. General Reanimatology]. 2014; 10 (6): 55—64. http://dx.doi.org/10.15360/1813-9779-2014-6-55-64 [In Russ.]
2. Numakawa T. Possible protective action of neurotrophic factors and natural compounds against common neurodegenerative diseases. Neural. Regen. Res. 2014; 9 (16): 1506—1508. http://dx.doi.org/10. 4103/1673-5374.139474. PMID: 25317165
3. Gutiérrez-Fernández M., Fuentes B., Rodríguez-Frutos B., Ramos-Cejudo J., Vallejo-Cremades M.T., Díez-Tejedor E. Trophic factors and cell therapy to stimulate brain repair after ischaemic stroke. J. Cell Mol. Med. 2012; 16 (10): 2280—2290. http://dx.doi.org/10.1111/j.1582-4934.2012.01575.x. PMID: 22452968
4. Imamura T. Physiological functions and underlying mechanisms of fibroblast growth factor (FGF) family members: recent findings and implications for their pharmacological application. Biol. Pharm. Bull. 2014; 37(7): 1081—1089. PMID: 24988999
5. Zechel S., Werner S., Unsicker K., von Bohlen und Halbach O. Expression and functions of fibroblast growth factor 2 (FGF-2) in hippocampal formation. Neuroscientist. 2010; 16 (4): 357—373. http://dx.doi.org/ 10.1177/1073858410371513. PMID: 20581332
6. Avet Rochex A., Kaul A.K., Gatt A.P., McNeill H., Bateman J.M. Concerted control of gliogenesis by InR/TOR and FGF signalling in the Drosophila postembryonic brain. Development. 2012; 139 (15): 2763—2772. http://dx.doi.org/10.1242/dev.074179. PMID: 22745312
7. Chen J., Li Y., Katakowski M., Chen X., Wang L., Lu D., Lu M., Gautam S.C., Chopp M. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J. Neurosci. Res. 2003; 73 (6): 778—786. http://dx.doi.org/10.1002/jnr.10691. PMID: 12949903
8. Jinqiao S., Bin S., Wenhao Z., Yi Y. Basic fibroblast growth factor stimulates the proliferation and differentiation of neural stem cells in neonatal rats after ischemic brain injury. Brain Dev. 2009; 31 (5): 331—340. http://dx.doi.org/10.1016/j.braindev.2008.06.005. PMID: 18657919
9. Lenhard T., Schober A., Suter Crazzolara C., Unsicker K. Fibroblast growth factor-2 requires glial-cell-line-derived neurotrophic factor for exerting its neuroprotective actions on glutamate-lesioned hippocampal neurons. Mol. Cell. Neurosci. 2002; 20 (2): 181—197. http://dx.doi.org/10.1006/mcne.2002.1134. PMID: 12093153
10. Tanaka R., Miyasaka Y., Yada K., Ohwada T., Kameya T. Basic fibroblast growth factor increases regional cerebral blood flow and reduces infarct size after experimental ischemia in a rat model. Stroke. 1995; 26 (11): 2154—2158. http://dx.doi.org/10.1161/01.STR.26.11.2154. PMID: 7482665
11. Speliotes E.K., Caday C.G., Do T., Weise J., Kowall N.W., Finklestein S.P. Increased expression of basic fibroblast growth factor (bFGF) following focal cerebral infarction in the rat. Brain Res. Mol. Brain Res. 1996; 39 (1—2): 31—42. http://dx.doi.org/10.1016/0169-328X(95)00351-R. PMID: 8804711
12. Lin T.N., Te J., Lee M., Sun G.Y., Hsu C.Y. Induction of basic fibroblast growth factor (bFGF) expression following focal cerebral ischemia. Brain Res. Mol. Brain Res. 1997; 49 (1—2): 255—265. PMID: 9387885
13. Wei O.Y., Huang Y.L., Da C.D., Cheng J.S. Alteration of basic fibroblast growth factor expression in rat during cerebral ischemia. Acta Pharmacol. Sin. 2000; 21 (4): 296—300. PMID: 11324453
14. Avrushchenko M.Sh., Ostrova I.V., Zarzhetsky Yu.V., Moroz V.V., Gudasheva T.A., Seredenin S.B. Vliyanie mimetika faktora rosta nervov GK-2 na postreanimatsionnuyu ekspressiyu neirotroficheskikh faktorov. [Effect of nerve growth factormimetic GK-2 on the expression of postresuscitation neurotrophic factors]. Patologicheskaya Fiziologiya i Eksperimentalnaya Meditsina. 2015; 2: 13—18. [In Russ.]
15. Okada T., Kataoka Y., Takeshita A., Mino M., Morioka H., Kusakabe K.T., Kondo T. Effects of transient forebrain ischemia on the hippocampus of the Mongolian gerbil (Meriones unguiculatus): an immunohis-tochemical study. Zoolog. Sci. 2013; 30 (6): 484—489. http://dx.doi.org/10.2108/zsj.30.484. PMID: 23725314
16. Zhao X.C., Zhang L.M., Tong D.Y., An P., Jiang C., Zhao P., Chen W.M., Wang J. Propofol increases expression of basic fibroblast growth factor after transient cerebral ischemia in rats. Neurochem. Res. 2013; 38 (3): 530–537. http://dx.doi.org/10.1007/s11064-012-0945-4. PMID: 23247820
17. Naylor M., Bowen K.K., Sailor K.A., Dempsey R.J., Vemuganti R. Preconditioning-induced ischemic tolerance stimulates growth factor expression and neurogenesis in adult rat hippocampus. Neurochem. Int. 2005; 47 (8): 565—572. http://dx.doi.org/10.1016/j.neuint.2005. 07.003. PMID: 16154234
18. Kiprianova I., Schindowski K., von Bohlen und Halbach O., Krause S., Dono R., Schwaninger M., Unsicker K. Enlarged infarct volume and loss of BDNF mRNA induction following brain ischemia in mice lacking FGF-2. Exp. Neurol. 2004; 189 (2): 252—260. http://dx.doi.org/ 10.1016/j.expneurol.2004.06.004. PMID: 15380477
19. Leker R.R., Soldner F., Velasco I., Gavin D.K., Androutsellis Theotokis A., McKay R.D. Long-lasting regeneration after ischemia in the cerebral cortex. Stroke. 2007; 38 (1): 153—161. PMID: 17122419
20. Watanabe T., Okuda Y., Nonoguchi N., Zhao M.Z., Kajimoto Y., Furutama D., Yukawa H., Shibata M.A., Otsuki Y., Kuroiwa T., Miyatake S. Postischemic intraventricular administration of FGF-2 expressing adenoviral vectors improves neurologic outcome and reduces infarct volume after transient focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab. 2004; 24 (11): 1205—1213. http://dx.doi.org/10.1097/01.WCB.0000136525.75839.41. PMID: 15545913
21. Ye J., Lin H., Mu J., Cui X., Ying H., Lin M., Wu L., Weng J., Lin X. Effect of basic fibroblast growth factor on hippocampal cholinergic neurons in a rodent model of ischaemic encephalopathy. Basic Clin. Pharmacol. Toxicol. 2010; 107 (6): 931—939. http://dx.doi.org/10.1111/j.1742-7843.2010.00603.x. PMID: 20618306
22. Fujiwara K., Date I., Shingo T., Yoshida H., Kobayashi K., Takeuchi A., Yano A., Tamiya T., Ohmoto T. Reduction of infarct volume and apoptosis by grafting of encapsulated basic fibroblast growth factor-secreting cells in a model of middle cerebral artery occlusion in rats. J. Neurosurg. 2003; 99 (6): 1053—1062. http://dx.doi.org/10.3171/jns.2003.99.6. 1053. PMID: 14705734
23. Zhang M., Ma Y.F., Gan J.X., Jiang G.Y., Xu S.X., Tao X.L., Hong A., Li J.K. Basic fibroblast growth factor alleviates brain injury following global ischemia reperfusion in rabbits. J. Zhejiang Univ. Sci. B. 2005; 6 (7): 637—643. http://dx.doi.org/10.1631/jzus.2005.B0637. PMID: 15973765
24. Wang Z.L., Cheng S.M., Ma M.M., Ma Y.P., Yang J.P., Xu G.L., Liu X.F. Intranasally delivered bFGF enhances neurogenesis in adult rats following cerebral ischemia. Neurosci. Lett. 2008; 446 (1): 30—35. http://dx.doi.org/10.1016/j.neulet.2008.09.030. PMID: 18822350
25. Martinez G., Di Giacomo C., Sorrenti V., Carnazza M.L., Ragusa N., Barcellona M.L., Vanella A. Fibroblast growth factor-2 and transforming growth factor-beta1 immunostaining in rat brain after cerebral postischemic reperfusion. J. Neurosci. Res. 2001; 63 (2): 136—142. PMID: 11169623
26. Mattson M.P. Neuroprotective signal transduction: relevance to stroke. Neurosci. Biobehav. Rev. 1997; 21 (2): 193—206. http://dx.doi. org/10.1016/S0149-7634(96)00010-3. PMID: 9062943
27. Blum S., Issbrüker K., Willuweit A., Hehlgans S., Lucerna M., Mechtcheriakova D., Walsh K., von der Ahe D., Hofer E., Clauss M. An inhibitory role of the phosphatidylinositol 3-kinase-signaling pathway in vascular endothelial growth factor-induced tissue factor expression. J. Biol. Chem. 2001; 276 (36): 33428—33434. http://dx.doi.org/10. 1074/jbc.M105474200. PMID: 11445586
28. Williams D.L., Ozment Skelton T., Li C. Modulation of the phospho-inositide 3-kinase signaling pathway alters host response to sepsis, inflammation, and ischemia/reperfusion injury. Shock. 2006; 25 (5): 432—439. http://dx.doi.org/10.1097/01.shk.0000209542.76305.55. PMID: 16680006
29. Zhao H., Sapolsky R.M., Steinberg G.K. Phosphoinositide-3-kinase/akt survival signal pathways are implicated in neuronal survival after stroke. Mol. Neurobiol. 2006; 34 (3): 249—270. http://dx.doi.org/10.1385/MN:34:3:249. PMID: 17308356
30. Noshita N., Lewén A., Sugawara T., Chan P.H. Evidence of phosphorylation of Akt and neuronal survival after transient focal cerebral ischemia in mice. J. Cereb. Blood Flow Metab. 2001; 21 (12): 1442—1450. http://dx.doi.org/10.1097/00004647-200112000-00009. PMID: 11740206
31. Saito A., Narasimhan P., Hayashi T., Okuno S., Ferrand Drake M., Chan P.H. Neuroprotective role of a proline-rich Akt substrate in apoptotic neuronal cell death after stroke: relationships with nerve growth factor. J. Neurosci. 2004; 24 (7): 1584—1593. http://dx.doi.org/10.1523/ JNEUROSCI.5209-03.2004. PMID: 14973226
32. Ostrova I.V., Avrushchenko M.Sh. Ekspressiya mozgovogo neirotroficheskogo faktora (BDNF) povyshaet ustoichivost neironov k gibeli v postreanimatsionnom periode. Obshchaya Reanimatologiya. [Expression of brain-derived neurotrophic factor (BDNF) increases the resistance of neurons to death in the postresuscitation period. General Reanimatology]. 2015; 11 (3): 45—53. http://dx.doi.org/10.15360/1813-9779-2015-3-45-53. [In Russ.].
33. Avrushchenko M.Sh., Ostrova I.V., Volkov A.V. Postreanimatsionnye izmeneniya ekspressii glialnogo neirotroficheskogo faktora (GDNF): vzaimosvyaz s povrezhdeniem kletok Purkinye mozzhechka (eksperimentalnoe issledovanie). Obshchaya Reanimatologiya. [Postresuscitation changes in the expression of glial-derived neurotrophic factor (GDNF): association with cerebellar Purkinje cell damage (an experimental study). General Reanimatology]. 2014; 10 (5): 59—68. http://dx.doi.org/10.15360/1813-9779-2014-5-59-68.[In Russ.]
34. Mudò G., Bonomo A., Di Liberto V., Frinchi M., Fuxe K., Belluardo N. The FGF-2/FGFRs neurotrophic system promotes neurogenesis in the adult brain. J. Neural. Transm. 2009; 116 (8): 995—1005. http://dx.doi.org/10.1007/s00702-009-0207-z. PMID: 19291360
35. Kuge A., Takemura S., Kokubo Y., Sato S., Goto K., Kayama T. Temporal profile of neurogenesis in the subventricular zone, dentate gyrus and cerebral cortex following transient focal cerebral ischemia. Neurol. Res. 2009; 31 (9): 969—976. http://dx.doi.org/10.1179/174313209X 383312. PMID: 19138475
36. Tonchev A.B. Brain ischemia, neurogenesis, and neurotrophic receptor expression in primates. Arch. Ital. Biol. 2011; 149 (2): 225—231. http://dx.doi.org/10.4449/aib.v149i2.1368. PMID: 21701994
37. Sun D., Bullock M.R., McGinn M.J., Zhou Z., Altememi N., Hagood S., Hamm R., Colello R.J. Basic fibroblast growth factor-enhanced neuro-genesis contributes to cognitive recovery in rats following traumatic brain injury. Exp. Neurol. 2009; 216 (1): 56—65. http://dx.doi.org/10.1016/j.expneurol.2008.11.011. PMID: 19100261
38. Won S.J., Xie L., Kim S.H., Tang H., Wang Y., Mao X., Banwait S., Jin K. Influence of age on the response to fibroblast growth factor-2treatment in a rat model of stroke. Brain Res. 2006; 1123 (1): 237—244. PMID: 17064673
39. Bogousslavsky J., Victor S.J., Salinas E.O., Pallay A., Donnan G.A., Fieschi C., Kaste M., OrgogozoJ.M., Chamorro A., Desmet A.; European Australian Fiblast (Trafermin) in Acute Stroke Group. Fiblast (trafermin) in acute stroke: results of the European-Australian phaseII/III safety and efficacy trial. Cerebrovasc. Dis. 2002; 14 (3—4): 239—251. http://dx.doi.org/10.1159/000065683. PMID: 12403958
40. Andres C., Hasenauer J., Ahn H.S., Joseph E.K., Isensee J., Theis F.J., Allgöwer F., Levine J.D., Dib-Hajj S.D., Waxman S.G., HuchoT. Wound-healing growth factor, basic FGF, induces Erk1/2-dependent mechanical hyperalgesia. Pain. 2013; 154 (10): 2216—2226. http://dx.doi.org/10.1016/j.pain.2013.07.005. PMID: 23867734
41. Wu D. Neuroprotection in experimental stroke with targeted neurotrophins. NeuroRx. 2005; 2 (1): 120—128. PMID: 15717063
42. Feng C., Zhang C., Shao X., Liu Q., Qian Y., Feng L., Chen J., Zha Y., Zhang Q., Jiang X. Enhancement of nose-to-brain delivery of basic fibroblast growth factor for improving rat memory impairments induced by coinjection of вamyloid and ibotenic acid into the bilateral hippocampus. Int. J. Pharm. 2012; 423 (2): 226—234. http://dx.doi.org/10.1016/j.ijpharm.2011.12.008. PMID: 22193058
43. Yemisci M., Caban S., Gursoy Ozdemir Y., Lule S., Novoa Carballal R., Riguera R., Fernandez Megia E., Andrieux K., Couvreur P., Capan Y., Dalkara T. Systemically administered brain-targeted nanoparticles transport peptides across the blood-brain barrier and provide neuro-protection. J. Cereb. Blood Flow Metab. 2015; 35 (3): 469—475. http://dx.doi.org/10.1038/jcbfm.2014.220. PMID: 25492116
44. Grothe C., Timmer M. The physiological and pharmacological role of basic fibroblast growth factor in the dopaminergic nigrostriatal system. Brain Res. Rev. 2007; 54 (1): 80—91. http://dx.doi.org/10.1016/j.brain-resrev.2006.12.001. PMID: 17229467
Review
For citations:
Ostrova I.V., Avrushchenko M.Sh. NEUROPROTECTIVE ROLE OF BASIC FIBROBLAST GROWTH FACTOR IN ISCHEMIC BRAIN LESION: A REVIEW. General Reanimatology. 2015;11(6):48-60. https://doi.org/10.15360/1813-9779-2015-6-48-60