Effect of SkQ1 Antioxidant on Structural and Functional Conditions of The Brain in PostResuscitation Period
https://doi.org/10.15360/1813-9779-2016-2-6-19
Abstract
The aim was to assess the efficacy of mitochondriatargeted antioxidant SkQ1 in prevention of structural and functional abnormalities of brain postresuscitation after cardiac arrest.
Materials and methods. Adult male Wistar rats (n=19) underwent cardiac arrest for 7 minutes followed by resuscitation. Nine rats were administered with 500 nmol/kg SkQ1 per os with water for 2 weeks (1 week before and 1 week after resuscitation). A control group consisted of shamoperated animals (n=10). At days 4—6 post operation locomotor activity and anxiety («elevated plus maze» test) and sensorimotor function of limbs («beam walking» test) were examined. Total numbers of neurons per 1 mm of their layer length in vulnerable neuronal populations (cerebellar Purkinje cells and piramidal neurons of hippocampus fields CA1 and CA4) were estimated by histological analysis of the specimens stained with cresyl violet on day 7 postresuscitation. To identify possible mechanisms of SkQ1 action, the immunohistochemical study of a glialderived neurotrophic factor (GDNF) expression in piramidal neurons of hippocampus was performed by indirect peroxidaseantiperoxidase method and antiGDNF primary polyclonal antibodies.
Results. Ischemiareperfusion resulted in neuronal loss in all studied brain areas followed by reduction in locomotor activity and development of sensorimotor deficit. SkQ1 prevented development of postresuscitative locomotor and sensorimotor irregularities, significantly reduced Purkinje cells loss, prevented death of piramidal neurons in hippocampal field CA4, but not in CA1. Data demonstrated, that iIn Purkinje cells from resuscitated rats treated with SkQ1 there was a significant increase in number of GDNFpositive neurons, which were more resistant to ischemia (transition of GDNFnegative cells toward the category of cells actively expressing this factor) that promoted their survival postresuscitation.
Conclusion. Data confirm the positive effects of SkQ1 on structural and functional status of the brain postre suscitation and suggest possible use of SkQ1 for the prevention or correction of posthypoxic encephalopathies.
About the Authors
M. L. LovatRussian Federation
1, Leninskie Gory Str., Build. 73, Moscow 119192;
1, Leninskie Gory Str., Build. 12, Moscow 119991
M. Sh. Avrushchenko
Russian Federation
25, Petrovka Str., Build. 2, Moscow 107031
O. A. Averina
Russian Federation
1, Leninskie Gory Str., Build. 73, Moscow 119192
V. V. Pavshintsev
Russian Federation
1, Leninskie Gory Str., Build. 73, Moscow 119192
I. V. Ostrova
Russian Federation
25, Petrovka Str., Build. 2, Moscow 107031
Y. V. Zarzhetsky
Russian Federation
25, Petrovka Str., Build. 2, Moscow 107031
V. V. Moroz
Russian Federation
25, Petrovka Str., Build. 2, Moscow 107031
M. V. Egorov
Russian Federation
1, Leninskie Gory Str., Build. 73, Moscow 119192
References
1. Skulachev V.P., Anisimov V.N., Antonenko Y.N., Bakeeva L.E., Chernyak B.V., Erichev V.P., Filenko O.F., Kalinina N.I., Kapelko V.I., Kolosova N.G., Kopnin B.P., Korshunova G.A., Lichinitser M.R., Obukhova L.A., Pasyukova E.G., Pisarenko O.I., Roginsky V.A., Ruuge E.K., Senin I.I., Severina I.I., Skulachev M.V., Spivak I.M., Tashlitsky V.N., Tkachuk V.A., Vyssokikh M.Y., YaguzhinskyL.S., Zorov D.B. An attempt to prevent senescence: a mito chondrial approach. Biochim. Biophys. Acta. 2009; 1787 (5): 437–461. http://dx.doi.org/ 10.1016/j.bbabio.2008.12.008. PMID: 19159610
2. Skulachev V.P. Mitochondriatargeted antioxidants as promising drugs for treatment of agerelated brain diseases. J. Alzheimers Disease. 2012; 28 (2): 283–289. http://dx.doi.org/10.3233/JAD2011111391. PMID: 21987592
3. Lukashev A.N., Skulachev M.V., Ostapenko V., Savchenko A.Y., Pavshintsev V.V., Skulachev V.P. Advances in development of recharge able mitochondrial antioxidants. Prog. Mol. Biol. Transl. Sci. 2014; 127: 251–265. http://dx.doi.org/10.1016/B9780123946256.000106. PMID: 25149221
4. Anisimov V.N., Bakeeva L.E., Egormin P.A., Filenko O.F., Isakova E.F., Manskikh V.N., Mikhelson V.M., Panteleeva A.A., Pasyukova E.G., Pilipenko D.I., Piskunova T.S., Popovich I.G., Roshchina N.V., Rybina O.Y., Saprunova V.B., Samoylova T.A., Semenchenko A.V., Skulachev M.V., Spivak I.M., Tsybul’ko E.A., Tyndyk M.L., Vyssokikh M.Y., Yurova M.N., Zabezhinsky M.A., Skulachev V.P. Mitochondriatargeted plasto quinone derivatives as tools to interrupt execution of the aging program. 5. SkQ1 prolongs lifespan and prevents development of traits of senescence. Biochemistry (Mosc.). 2008; 73 (12): 1329–1342. http://dx.doi.org/10.1134/S0006297908120055. PMID: 19120018
5. Antonenko Y.N., Avetisyan A.V., Bakeeva L.E., Chernyak B.V., Chertkov V.A., Domnina L.V., Ivanova O.Y., Izyumov D.S., Khailova L.S., Klishin S.S., Korshunova G.A., Lyamzaev K.G., Muntyan M.S., Nepryakhina O.K., Pashkovskaya A.A., Pletjushkina O.Y., Pustovidko A.V., Roginsky V.A., Rokitskaya T.I., Ruuge E.K., Saprunova V.B., Severina I.I., Simonyan R.A., Skulachev I.V., Skulachev M.V., Sumbatyan N.V., Sviryaeva I.V., Tashlitsky V.N., Vassiliev J.M., Vyssokikh M.Y., Yaguzhinsky L.S., Zamyatnin A.A.Jr., Skulachev V.P. Mitochondriatar geted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies. Biochemistry (Mosc.). 2008; 73 (12): 1273–1287. http://dx.doi.org/10.1134/S0006297908120018. PMID: 19120014
6. Bakeeva L.E., Barskov I.V., Egorov M.V., Isaev N.K., Kapelko V.I., Kazachenko A.V., Kirpatovsky V.I., Kozlovsky S.V., Lakomkin V.L., Levina S.B., Pisarenko O.I., Plotnikov E.Y., Saprunova V.B., Serebryakova L.I., Skulachev M.V., Stelmashook E.V., Studneva I.M., Tskitishvili O.V., Vasilyeva A.K., Victorov I.V., Zorov D.B., Skulachev V.P. Mitochondriatargeted plastoquinone derivatives as tools to interrupt execution of the aging program. 2. Treatment of some ROS and age related diseases (heart arrhythmia, heart infarctions, kidney ischemia, and stroke). Biochemistry (Mosc.). 2008; 73 (12): 1288–1299. http://dx.doi.org/10.1134/S000629790812002X. PMID: 19120015
7. Lakomkin V.L., Kapelko V.I. Zashchitnyi effekt mitokhondrialnogo antioksidanta SkQ1 pri ishemii i reperfuzii serdtsa. [Protective effect of mitochondrial antioxidant SkQ1 at cardiac ischemia and reperfusion]. Kardiologiya. 2009; 49 (10): 55–60. PMID: 19845521. [In Russ.]
8. Plotnikov E.Y., Chupyrkina A.A., Jankauskas S.S., Pevzner I.B., Silachev D.N., Skulachev V.P., Zorov D.B. Mechanisms of nephroprotective effect of mitochondriatargeted antioxidants under rhabdomyolysis and ischemia/reperfusion. Biochim. Biophys. Acta. 2011; 1812 (1): 77–86. http://dx.doi.org/10.1016/j.bbadis.2010.09.008. PMID: 20884348
9. Kapay N.A., Popova O.V., Isaev N.K., Stelmashook E.V., Kondratenko R.V., Zorov D.B., Skrebitsky V.G., Skulachev V.P. Mitochondriatarget ed plastoquinone antioxidant SkQ1 prevents amyloidвinduced impairment of longterm potentiation in rat hippocampal slices. J. Alzheimers Dis. 2013; 36 (2): 377–383. http://dx.doi.org/10.3233/JAD122428. PMID: 23735258
10. Stefanova N.A., Fursova A.Zh., Kolosova N.G. Behavioral effects induced by mitochondriatargeted antioxidant SkQ1 in Wistar and senescenceaccelerated OXYS rats. J. Alzheimers Dis. 2010; 21 (2): 479–491. http://dx.doi.org/10.3233/JAD2010091675. PMID: 20555140
11. Avrushchenko M.Sh., Ostrova I.V., Volkov A.V. Postreanimatsionnye izmeneniya ekspressii glialnogo neirotroficheskogo faktora (GDNF): vzaimosvyaz s povrezhdeniem kletok Purkinye mozzhechka (eksperimen talnoe issledovanie). Obshchaya Reanimatologiya. [Postresuscitation changes in the expression of glialderived neurotrophic factor (GDNF): association with cerebellar Purkinje cell damage (an experimental study). General Reanimatology]. 2014; 10 (5): 59–68. http://dx.doi.org/10.15360/18139779201455968. [In Russ.]
12. Cao J., Niu H., Wang H., Huang X., Gao D. NFкB p65/p52 plays a role in GDNF upregulating Bcl2 and Bclw expression in 6OHDA induced apoptosis of MN9D cell. J. Neurosci. 2013; 123 (10): 705–710. http://dx.doi.org/10.3109/00207454.2013.795149. PMID: 23590664
13. Li F., Wang M., Zhu S., Li L., Xiong Y., Gao D. The potential neuroprotection mechanism of GDNF in the 6OHDAinduced cellular models of Parkinson’s Disease. Cell Mol. Neurobiol. 2013; 33 (7): 907–919. http://dx.doi.org/10.1007/s1057101399570. PMID: 23846419
14. Li L., Chen H., Chen F., Li F., Wang M., Wang L., Li Y., Gao D. Effects of glia cell linederived neurotrophic factor on microRNA expression in a 6hydroxydopamineinjered dopaminergic cell line. J. Neural. Transm. (Vienna). 2013; 120 (11): 1511–1523. http://dx.doi.org/10.1007/s007020131031z. PMID: 23771700
15. Youdim M. Multi target neuroprotective and neurorestorative anti Parkinson and antiAlzheimer drugs ladostigil and m30 derived from rasagiline. Exp. Neurobiol. 2013; 22 (1): 1–10. http://dx.doi.org/10.5607/en.2013.22.1.1. PMID: 23585716
16. Xu S., Bi C., Choi R., Zhu K., Miernisha A., Dong T., Tsim K. Flavonoids induce the synthesis and secretion of neurotrophic factors in cultured rat astrocytes: a signaling response mediated by estrogen receptor. Evid. Based Complement. Alternat. Med. 2013; 2013: 127075. http://dx.doi.org/10.1155/2013/127075. PMID: 23878590
17. Kotyuk E., Nemeth N., Halmai Z., Faludi G., SasvariSzekely M., Szekely A. Association between mood characteristics and polymorphisms of glial cell linederived neurotrophic factor (GNDF) in patients with depression. Neuropsychopharmacol. Hung. 2013; 15 (2): 63–72. PMID: 23817357
18. Myazaki H., Nagashima K., Okuma Y., Nomura Y. Expression of glial cell linederived neurotrophic factor induced by transient forebrain ischemia in rats. Brain Res. 2001; 922 (2): 165–172. http://dx.doi.org/10.1016/S00068993(01)03013X. PMID: 11743946
19. Ikeda T., Xia X.Y., Xia Y.X., Ikenoue T., Han B., Choi B.H. Glial cell line derived neurotrophic factor protects against ischemia/hypoxiainduced brain injury in neonatal rats. Acta Neuropathol. 2000; 100 (2): 161–167. http://dx.doi.org/10.1007/s004019900162. PMID: 10963363
20. Korsak K., Dolatshad N.F., Silva A.T., Saffrey M.J. Ageing of enteric neurons: oxidative stress, neurotrophic factors and antioxidant enzymes. Chem. Cent. J. 2012; 2; 6 (1): 80. http://dx.doi.org/10.1186/1752153X680. PMID: 22857398
21. Thrasivoulou C., Soubeyre V., Ridha H., Giuliani D., Giaroni C., Michael G.J., Saffrey M.J., Cowen T. Reactive oxygen species, dietary restriction and neurotrophic factors in agerelated loss of myenteric neurons. Aging Cell. 2006; 5 (3): 247–257. http://dx.doi.org/10.1111/j.1474 9726.2006.00214.x. PMID: 16842497
22. Korpachev V.G., Lysenkov S.P., Tel L.Z. Modelirovanie klinicheskoi smerti i postreanimatsionnoi bolezni u krys. [Modeling clinical death and postresuscitation disease in rats]. Patologicheskaya Fiziologiya i Eksperimentalnaya Terapiya. 1982; 3: 78–80. PMID: 7122145. [In Russ.]
23. Pellow S., Chopin P., File S.E., Briley M. Validation of open: closed arm entries in an elevated plusmaze as a measure of anxiety in the rat. J. Neurosci. Methods. 1985; 14 (3): 149–167. http://dx.doi.org/10.1016/01650270(85)900317. PMID: 2864480
24. Schallert T., Cenci M.A., Whishaw I.Q. Animal models of neurological deficits: how relevant is the rat? Nat. Rev. Neurosci. 2002; 3 (7): 574–579. PMID: 12094213
25. Ross D.A., Glick S.D. Lateralized effects of bilateral frontal cortex lesions in rats. Brain Res. 1981; 210 (1–2): 379–382. http://dx.doi.org/10.1016/00068993(81)909136. PMID: 7194718
26. Sanches E.F., Arteni N.S., Scherer E.B., Kolling J., Nicola F., Willborn S., Wyse A.T., Netto C.A. Are the consequences of neonatal hypoxiaischemia dependent on animals’ sex and brain lateralization? Brain Res. 2013; 1507: 105–114. http://dx.doi.org/10.1016/j.brainres.2013.02.040. PMID:23466455
27. Zarzhetsky Yu.V., Avrushchenko M.Sh., Volkov A.V. Neirofiziologicheskie mekhanizmy postreanimatsionnogo povrezhdeniya mozga. Obshchaya Reanimatologiya. [Neurophysiological mechanisms of postresuscitative mechanisms of brain pathology. General Reanimatology]. 2006; 2 (5–6): 101–110. http://dx.doi.org/10.15360/1813977920066101 110. [In Russ.]
28. Avrushchenko M.Sh., Volkov A.V., Zarzhetsky Yu.V., Ostrova I.V. Postreanimatsionnye izmeneniya morfofunktsionalnogo sostoyaniya nervnykh kletok: znachenie v patogeneze entsefalopatii. Obshchaya Reanimatologiya. [Postresuscitative changes in the morphofunctional state of nerve cells: implication in the pathogenesis of encephalopathies. General Reanimatology]. 2006; 2 (5–6): 85–97. http://dx.doi.org/10.15360/18139779200668596. [In Russ.]
29. Avrushchenko M.Sh., Moroz V.V., Ostrova I.V. Postreanimatsionnye izmeneniya mozga na urovne neironalnykh populyatsii: zakonomernosti i mekhanizmy. Obshchaya Reanimatologiya. [Postresuscitation changes in the brain at the level of neuronal populations: patterns and mechanisms. General Reanimatology]. 2012; 8 (4): 69–78. http://dx.doi.org/10.15360/181397792012 469. [In Russ.]
30. Kofler J., Hattori K., Sawada M., DeVries A.C., Martin L.J., Hurn P.D., Traystman R.J. Histopathological and behavioral characterization of a novel model of cardiac arrest and cardiopulmonary resuscitation in mice. J. Neurosci. Methods. 2004; 136 (1): 33–44. http://dx.doi.org/10.1016/j.jneumeth.2003.12.024. PMID: 15126043
31. Kosaka Y., Quillinan N., Bond C., Traystman R., Hurn P., Herson P. GPER1/GPR30 activation improves neuronal survival following global cerebral ischemia induced by cardiac arrest in mice. Transl. Stroke Res. 2012; 3 (4): 500–507. http://dx.doi.org/10.1007/s1297501202118. PMID: 23483801
32. Deng G., Yonchek J.C., Quillinan N., Strnad F.A., Exo J., Herson P.S., Traystman R.J. A novel mouse model of pediatric cardiac arrest and cardiopulmonary resuscitation reveals agedependent neuronal sensitivities to ischemic injury. J. Neurosci. Methods. 2014; 222: 34–41. http://dx.doi.org/ 10.1016/j.jneumeth.2013.10.015. PMID: 24192226
33. Nikonenko A.G., Radenovic L., Andjus P.R., Skibo G.G. Structural features of ischemic damage in the hippocampus. Anat. Rec. (Hoboken). 2009; 292 (12): 1914–1921. http://dx.doi.org/ 10.1002/ar.20969.PMID: 19943345
34. Quillinan N., Grewal H., Deng G., Shimizu K., Yonchek J.C., Strnad F., Traystman R.J., Herson P.S. Regionspecific role for GluN2Bcontaining NMDA receptors in injury to Purkinje cells and CA1 neurons following global cerebral ischemia. Neuroscience. 2015; 284: 555–565. http://dx.doi.org/10.1016/j.neuroscience.2014.10.033. PMID: 25450957
35. Ishibashi N., Iwata Y., Okamura T., Zurakowski D., Lidov H.G., Jonas R.A. Differential neuronal vulnerability varies according to specific cardiopulmonary bypass insult in a porcine survival model. J. Thorac. Cardiovasc. Surg. 2010; 140 (6): 1408–1415. e13. http://dx.doi.org/10.1016/j.jtcvs.2010.03.008. PMID: 20434176
36. Ginsberg M.D. Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology. 2008; 55 (3): 363–389. http://dx.doi.org/10.1016/j.neuropharm.2007.12.007. PMID: 18308347
37. Iadecola C., Anrather J. The immunology of stroke: from mechanisms to translation. Nat. Med. 2011; 17 (7): 796–808. http://dx.doi.org/10.1038/nm.2399. PMID: 21738161
38. Geocadin R.G., Koenig M.A., Jia X., Stevens R.D., Peberdy M.A. Management of brain injury after resuscitation from cardiac arrest. Neurol. Clin. 2008; 26 (2): 487–506. http://dx.doi.org/10.1016/j.ncl.2008.03.015. PMID: 18514823
39. Avrushchenko M.Sh., Ostrova I.V., Zarzhetsky Yu.V., Volkov A.V. Individualnotipologicheskie osobennosti postreanimatsionnykh izmenenii mozga: rol belkov teplovogo shoka HSP70. Obshchaya Reanimatologiya. [Individual typological features of postresuscitative cerebral changes: role of heat shock proteins HSP70. General Reanimatology]. 2008; 4 (6): 34–39. http://dx.doi.org/10.15360/181397792008634. [In Russ.]
40. Ostrova I.V., Moroz V.V., Avrushchenko M.Sh. Znachenie immunogis tokhimicheskikh issledovanii HSP70 v izuchenii postreanimatsion nykh izmenenii mozga. Obshchaya Reanimatologiya. [Significance of immunohistochemical studies of heat shock proteins of the HSP70 family in the investigation of postresuscitative brain changes. General Reanimatology]. 2007; 3 (5–6): 91–96. http://dx.doi.org/10.15360/18139779200769196. [In Russ.]
41. Ostrova I.V., Avrushchenko M.Sh., Volkov A.V. Vzaimosvyaz urovnya ekspressii belka GRP78 s vyrazhennostyu postishemicheskogo povrezhdeniya gippokampa u krys raznogo pola. Obshchaya Reanimatologiya. [Association of GRP78 protein expression with the degree of postischemic hippocampal damage in rats of both sexes. General Reanimatology]. 2011; 7 (6): 28–33. http://dx.doi.org/10.15360/181397792011628. [In Russ.]
42. Avrushchenko M.Sh., Ostrova I.V., Zarzhetsky Yu.V., Moroz V.V., Gudasheva T.A., Seredenin S.B. Vliyanie mimetika faktora rosta nervov GK2 na postreanimatsionnuyu ekspressiyu neirotroficheskikh faktorov. [Effect of the nerve growth factor mimetic GK2 on postresus citation expression of neurotrophic factors]. Patologicheskaya Fiziologiya i Eksperimentalnaya Terapiya. 2015; 59 (2): 13–18. PMID: 26571801. [In Russ.]
43. Ostrova I.V., Avrushchenko M.Sh. Ekspressiya mozgovogo neirotrofich eskogo faktora (BDNF) povyshaet ustoichivost neironov k gibeli v postreanimatsionnom periode. Obshchaya Reanimatologiya. [Expression of BrainDerived Neurotrophic Factor (BDNF) increases the resistance of neurons to death in the postresuscitation period. General Reanimatology]. 2015; 11 (3): 45–53. http://dx.doi.org/10.15360/18139779201534553. [In Russ.]
44. Yuan H.B., Huang Y., Zheng S., Zuo Z. Hypothermic preconditioning reduces Purkinje cell death possibly by preventing the overexpression of inducible nitric oxide synthase in rat cerebellar slices after an in vitro simulated ischemia. Neuroscience. 2006; 142 (2): 381–389. http://dx.doi.org/10.1016/j.neuroscience.2006.06.053. PMID: 16890370
45. Yuan H.B., Huang Y., Zheng S., Zuo Z. Hypothermic preconditioning increases survival of Purkinje neurons in rat cerebellar slices after an in vitro simulated ischemia. Anesthesiology. 2004; 100 (2): 331–337. http://dx.doi.org/10.1097/0000054220040200000023. PMID: 14739808
46. Wang L., Deng Q., Wu X., Yu J., Yang X., Zhong Y. Upregulation of glutamateaspartate transporter by glial cell linederived neurotrophic factor ameliorates cell apoptosis in neural retina in streptozotocin induced diabetic rats. CNS Neurosci. Ther. 2013; 19 (12): 945–953. http://dx.doi.org/ 10.1111/cns.12150. PMID: 23870489
47. Lau Y.S., Patki G., DasPanja K., Le W.D., Ahmad S.O. Neuroprotective effects and mechanisms of exercise in a chronic mouse model of Parkinson’s disease with moderate neurodegeneration. Eur. J. Neurosci.2011; 33 (7): 1264–1274. http: //dx.doi.org/10.1111/j.14609568.2011.07626.x. PMID: 21375602
48. Aguiar A.S.Jr., Stragier E., da Luz Scheffer D., Remor A.P., Oliveira P.A., Prediger R.D., Latini A., RaismanVozari R., Mongeau R., Lanfumey L. Effects of exercise on mitochondrial function, neuroplasticity and anxiodepressive behavior of mice. Neuroscience. 2014; 271: 56–63. http: //dx.doi.org/10.1016/j.neuroscience.2014.04.027. PMID: 24780767
Review
For citations:
Lovat M.L., Avrushchenko M.Sh., Averina O.A., Pavshintsev V.V., Ostrova I.V., Zarzhetsky Y.V., Moroz V.V., Egorov M.V. Effect of SkQ1 Antioxidant on Structural and Functional Conditions of The Brain in PostResuscitation Period. General Reanimatology. 2016;12(2):6-19. https://doi.org/10.15360/1813-9779-2016-2-6-19