Preview

General Reanimatology

Advanced search

Inhibitory Interneurons of The Human Neocortex after Clinical Death

https://doi.org/10.15360/1813-9779-2016-4-24-36

Abstract

Objective: to analyze the human neocortex interneurons (areas 4, 10, 17 and 21 by Brodmann) after cardiac arrest (clinical death).
Materials and methods. The main group included patients (n=7, men) who survived 7—10 days and 70—90 days after cardiac arrest and later died due to heart failure. The control group (n=4, men) included individuals after sudden fatal accidents. The morphometric and histological analysis of 420 neocortical fields (Nissl#staining,
calbindin D28k, neuropeptide Y) was performed using light and confocal microscopy.
Results. We verified all main types of interneurons (Basket, Martinotti, and neurogliaform interneurons) in neocortex based on the morphology of their bodies and dendritic processes in both groups. The number of calbindin- and NPY-positive neurons in the neocortex was similar in the control and in the postoperative period.
However, calbindin- and NPY-immunopositive structure fields including neuronal cell bodies and their dendrites were significantly more represented in neocortex of patients from the main group. Maximum increase in common square in the relative areas of calbindin-immunopositive structures was observed 90 days after ischemia. The squares of NPY#immunopositive fields became larger seven days after resuscitation and remained increased on 90th day post-resuscitation.
Conclusion. Our findings demonstrate an increase of calbindin and NPY expression in human neocortex after clinical death, which can be explained by a compensatory  eaction of undamaged inhibitory cortical interneurons directed to protectbrain from ischemia.

About the Authors

V. A. Akulinin
Омский государственный медицинский университет Минздрава России
Russian Federation


S. S. Stepanov
Омский государственный медицинский университет Минздрава России
Russian Federation


A. V. Mytsik
Омский государственный медицинский университет Минздрава России
Russian Federation


A. S. Stepanov
Омский государственный медицинский университет Минздрава России
Russian Federation


V. S. Rasumovsky
Омский государственный медицинский университет Минздрава России
Russian Federation


References

1. Avrushchenko M.Sh., Ostrova I.V., Volkov A.V. Postreanimatsionnye izmeneniya ekspressii glialnogo neirotroficheskogo faktora (GDNF): vzaimosvyaz s povrezhdeniem kletok Purkinye mozzhechka (eksperimentalnoe issledovanie). Obshchaya Reanimatologiya. [Postresuscitation changes in the expression of glial derived neurotrophic factor (GDNF): association with cerebellar Purkinje cell damage (an experimental study). General Reanimatology]. 2014; 10 (5): 59-68. http://dx.doi.org/10.15360/1813-9779-2014-5-59-68. [In Russ.]

2. Zarzhetsky Y.V., Moroz V.V., Volkov A.V. Vliyanie immunoaktivnykh preparatov na funktsionalnoe vosstanovlenie mozga i steroidnye gormony v postreanimatsionnom periode. Obshchaya Reanimatologiya. [Effect of immunoactive drugs on postresuscitation processes in the brain and steroid hormones. General Reanimatology]. 2014; 10 (1): 5-11.http://dx.doi.org/10.15360/1813-9779-2014-1-5-11. [In Russ.]

3. Ostrova I.V., Avrushchenko M.Sh. Ekspressiya mozgovogo neirotroficheskogo faktora (BDNF) povyshaet ustoichivost neironov k gibeli v postreanimatsionnom periode. Obshchaya Reanimatologiya. [Expression of brain#derived neurotrophic factor (BDNF) increases the resistance of neurons to death in the postresuscitation period. General Reanimatology]. 2015; 11 (3): 45-53. http://dx.doi.org/10.15360/1813-9779-2015-3-45-53. [In Russ.]

4. Markram H., Toledo_Rodriguez M., Wang Y., Gupta A., Silberberg G., Wu C. Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 2004; 5 (10): 793#807. http://dx.doi.org/10.1038/nrn1519.PMID: 15378039

5. Kalinichenko S.G., Dudina Y.V., Motavkin P.A. Neurogliaform cells: neurochemistry, spatial arrangement, and their role in the neocortical inhibitory system. Tsitologiia. 2006; 48 (5): 508-514. PMID: 16893057

6. Druga R. Neocortical inhibitory system. Folia Biol. (Praha). 2009; 55 (6): 201-217. PMID: 20163769

7. Rossignol E. Genetic and function of neocortical GABAergic interneurons in neurodevelopmental disorders. Neural. Plast. 2011; 2011: 649325. http://dx.doi.org/10.1155/2011/649325. PMID: 21876820

8. Wenner P. Mechanisms of GABAergic homeostatic plasticity. Neural. Plast. 2011; 2011: 489470. http://dx.doi.org/10.1155/2011/489470.PMID: 21876819

9. Calabresi P., Di Filippo M. A pathophysiological link between dystonia, striatal interneurons and neuropeptide Y. Brain. 2013; 136 (Pt 5): 1341-1344. http://dx.doi.org/10.1093/brain/awt096.PMID: 23599388

10. Aoki C., Pickel V.M. Neuropeptide Y in the cerebral cortex and the caudate-putamen nuclei: ultrastructural basis for interactions with GABAergic and non#GABAergic neurons. J. Neurosci. 1989; 9 (12): 4333-4354. PMID: 2687439

11. Maekawa S., Al_Sarraj S., Kibble M., Landau S., Parnavelas J., Cotter D., Everall I., Leigh P.N. Cortical selective vulnerability in motor neuron disease: a morphometric study. Brain. 2004; 127 (Pt 6): 1237-1251. http://dx.doi.org/10.1093/brain/awh132. PMID: 15130949

12. Lavenex P., Lavenex P.B., Bennett J.L., Amaral D.G. Postmortem changes in the neuroanatomical characteristics of the primate brain: the hippocampal formation. J. Comp. Neurol. 2009; 512 (1): 27-51. http://dx.doi.org/10. 1002/cne.21906. PMID: 18972553

13. Sharma V., Nag T.C., Wadhwa S., Roy T.S. Stereological investigation and expression of calcium#binding proteins in developing human inferior colliculus. J. Chem. Neuroanat. 2009; 37 (2): 78-86. http://dx.doi.org/10. 1016/j.jchemneu.2008.11.002. PMID: 19095058

14. De Almeida J., Mengod G. Quantitative analysis of glutamatergic and GABAergic neurons expressing 5#HT2A receptors in human and monkey prefrontal cortex. J. Neurochem. 2007; 103 (2): 475-486. http://dx.doi.org/10.1111/j.1471#4159.2007.04768.x. PMID: 17635672

15. Buritica E., Villamil L., Guzman F., Escobar M.I., García_Cairasco N., Pimienta H.J. Changes in calcium-binding protein expression in human cortical contusion tissue. J. Neurotrauma. 2009; 26 (12): 2145-2155. http://dx.doi.org/10.1089/neu.2009.0894. PMID: 19645526

16. Akulinin V.A., Dahlstrom A. Quantitative analysis of MAP2 immunoreactivity in human neocortex of three patients surviving after brain ischemia. Neurochem. Res. 2003; 28 (2): 373-378. http://dx.doi.org/10.1023/A:1022401922669. PMID: 12608711

17. Naegele J.R., Katz L.C. Cell surface molecules containing N-acetylgalactosamine are associated with basket cells and neurogliaform cells in cat visual cortex. J. Neurosci. 1990; 10 (2): 540-557. PMID: 2303859

18. Raghupathi R., Graham D.I., McIntosh T.K. Apoptosis after traumatic brain injury. J. Neurotrauma. 2000; 17 (10): 927#938. http://dx.doi.org/10.1089/neu.2000.17.927. PMID: 11063058

19. Leker R.R., Shohami E. Cerebral ischemia and trauma#different etiologies yet similar mechanisms: neuroprotective opportunities. Brain Res. Rev. 2002; 39 (1): 55-73. http://dx.doi.org/10.1016/S0165-0173(02)00157-1. PMID: 12086708

20. Berman R.F., Verweij B.H., Muizelaar J.P. Neurobehavioral protection by the neuronal calcium channel blocker ziconotide in a model of traumatic diffuse brain injury in rats. J. Neurosurg. 2000; 93 (5): 821-828. http://dx.doi.org/10.3171/jns.2000.93.5.0821. PMID: 11059664

21. Patterson M., Yasuda R. Signaling pathways underlying structural plasticity of dendritic spines. Br. J. Pharmacol. 2011; 163 (8): 1626-1638. http://dx.doi.org/10.1111/j.1476-5381.2011.01328.x. PMID: 21410464

22. Cormier К.J., Greenwood А.С., Connor J.А. Bidirectional synaptic plasticity correlated with the magnitude of dendritic calcium transients above а threshold. J. Neurophysiol. 2001; 85 (1): 399-406. PMID: 11152740

23. Klapstein G.J., Vietla S., Lieberman Р.М., Gray Р.А., Airaksinen М.S., Thoenen H., Meyer M., Mody I. Calbindin D28K fails to protect hippocampal neurons against ischemia in spite of its cytoplasmic calcium buffering properties: evidence from calbindin-D28k knockout mice. Neuroscience. 1998; 85 (2): 361-373. http://dx.doi.org/10.1016/S0306-4522(97)00632-5. PMID: 9622236

24. Ghosh A., Greenberg M.E. Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science. 1995; 268 (5208): 239-247. http://dx.doi.org/10.1126/science.7716515. PMID: 7716515

25. Morona R., González A. Pattern of calbindin#D28k and calretinin immunoreactivity in the brain of Xenopuslaevis during embryonic and larval development. J. Comp. Neurol. 2013; 521 (1): 79-108. http://dx.doi.org/10.1002/cne.23163. PMID: 22678695

26. Goodman J.Н., Wasterlain С.G., Massarweh W.F., Dean Е., Sollas А.L., Sloviter R.S. Calbindin#D28k immunoreactivity and selective vulnerability to ischemia in the dentate gyrus of the developing rat. Brain Res. 1993; 606 (2): 309#314. http://dx.doi.org/10.1016/0006-8993(93)90999-4. PMID: 8490723

27. Yenari M.A., Minami M., Sun G.H., Meier T.J., Kunis D.M., McLaughlin J.R., Ho D.Y., Sapolsky R.M., Steinberg G.K. Calbindin D28K overexpression protects striatal neurons from transient focal cerebral ischemia. Stroke. 2001; 32 (4): 1028-1035. http://dx.doi.org/10.1161/01.STR.32.4.1028. PMID: 11283407

28. Rami А., Rabie А., Thomasset М., Krieglstein J. Calbindin D28K and ischemic damage of pyramidal cells in rat hippocampus. J. Neurosci. Res. 1992; 31 (1): 89-95. PMID: 1613825

29. Rami А., Rabie А., Winckler J. Synergy between chronic corticosterone treatment and cerebral ischemia in producing damage in noncalbindinergic neurons. Ехр. Neurol. 1998; 149 (2): 439#446. http://dx.doi.org/10.1006/exnr.1997.6729. PMID: 9500960

30. Barbado M.V., Briсón J.G., Weruaga E., Porteros A., Arévalo R., Aijón J., Alonso J.R. Changes in immunoreactivity to calcium#binding proteins in the anterior olfactory nucleus of the rat after neonatal olfactory deprivation. Exp. Neurol. 2002; 177 (1): 133-150. http://dx.doi.org/10.1006/exnr.2002.7951. PMID: 12429217

31. Desgent S., Boire D., Ptito M. Altered expression of parvalbumin and calbindin in interneurons within the primary visual cortex of neonatal enucleated hamsters. Neuroscience. 2010; 171 (4): 1326-1340. http://dx.doi.org/10.1016/j.neuroscience.2010.10.016. PMID: 20937364

32. Fung S.J., Webster M.J., Sivagnanasundaram S., Duncan C., Elashoff M., Weickert C.S. Expression of interneuron markers in the dorsolateral prefrontal cortex of the developing human and in schizophrenia. Am. J. Psychiatry. 2010; 167 (12): 1479#1488. http://dx.doi.org/10.1176/appi.ajp.2010.09060784. PMID: 21041246

33. Colmers W.F., El Bahh B. Neuropeptide Y and epilepsy. Epilepsy Curr. 2003; 3 (2): 53#58. http://dx.doi.org/10.1046/j.1535#7597.2003. 03208.x. PMID: 15309085

34. Andiran N., Celik N., Ark N., Koca C., Kurtaran H., Karabel D. Changes in growth pattern, leptin ghrelin and neuropeptide Y levels after adenotonsillectomy in prepubertal children. J. Pediatr. Endocrinol. Metab. 2013; 26 (7-8): 683-687. http://dx.doi.org/10.1515/jpem-201-#0325.PMID: 23612639

35. Goto S., Kawarai T., Morigaki R., Okita S., Koizumi H., Nagahiro S., Munoz E.L., Lee L.V., Kaji R. Defects in the striatal neuropeptide Y system in X-linked dystonia#parkinsonism. Brain. 2013; 136 (Pt 5): 1555-1567. http://dx.doi.org/10.1093/brain/awt084. PMID: 23599389

36. González_Albo M.C., Elston G.N., DeFelipe J. The human temporal cortex: characterization of neurons expressing nitric oxide synthase, neuropeptides and calcium#binding proteins, and their glutamate receptor subunit profiles. Cereb. Cortex. 2001; 11 (12): 1170-1181. http://dx.doi.org/10.1093/cercor/11.12.1170. PMID: 11709488

37. Hong S.M., Chung S.Y., Park M.S., Huh Y.B., Park M.S., Yeo S.G. Immunoreactivity of calcium#binding proteins in the central auditory nervous system of aged rats. J. Korean Neurosurg. Soc. 2009; 45 (4): 231235. http://dx.doi.org/10.3340/jkns.2009.45.4.231. PMID: 19444349

38.


Review

For citations:


Akulinin V.A., Stepanov S.S., Mytsik A.V., Stepanov A.S., Rasumovsky V.S. Inhibitory Interneurons of The Human Neocortex after Clinical Death. General Reanimatology. 2016;12(4):24-36. https://doi.org/10.15360/1813-9779-2016-4-24-36

Views: 1818


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)