Acute Blood Loss: Regional Blood Flow and Microcirculation (Review, Part II)
https://doi.org/10.15360/1813-9779-2016-5-65-94
Abstract
It was shown in the first part of the review that the alterations of systemic hemodynamics and microcirculation in acute blood loss led to the development of metabolic disorders and cell damage. The second part of the review highlights the methods of microcirculation and tissue oxygenation investigation. The focus is on modern biomicroscopy varieties and methods based on the laser technology. In particular, we discuss a method based on the mathematical analysis of microvascular blood flow oscillations (fluxmotion) to evaluate the regulatory mechanisms of microcirculation. The features of regional blood flow and microcirculation in different vascular regions of the body in acute blood loss, as well as during the subsequent reperfusion are considered. It was shown that microcirculatory alterations in a particular organ are largely determined by the structural and functional features of its blood supply, as well as by the role of this organ in the pathogenesis of acute blood loss. These changes can possess both adaptive and pathological significance depending on blood loss stage and severity.
About the Authors
V. V. MorozRussian Federation
25, Petrovka Str., Build. 2, Moscow 107031, Russia
I. A. Ryzhkov
Russian Federation
25, Petrovka Str., Build. 2, Moscow 107031, Russia
References
1. Kozlov V.I. Sistema mikrotsirkulyatsii krovi: klinikomorfologicheskie aspekty izucheniya. [The system of microcirculation: clinicalmorpho logical aspects of studying]. Regionarnoe Krovoobrashchenie i Mikrotsirkulyatsiya. 2006; 5 (1): 84–101. [In Russ.]
2. Roustit M., Cracowski J.L. Noninvasive assessment of skin microvascular function in humans: an insight into methods. Microcirculation. 2012; 19 (1): 47–64. http://dx.doi.org/10.1111/j.15498719.2011.00129.x.PMID: 21883640
3. Kerger H., Tsai A.G., Saltzman D.J., Winslow R.M., Intaglietta M. Fluid resuscitation with O2 vs. nonO2 carriers after 2 h of hemorrhagic shock in conscious hamsters. Am. J. Physiol. 1997; 272 (1 Pt 2): H525–H537. PMID: 9038975
4. Tokmakova T.O., Permyakova S.Yu., Kiseleva A.V., Shukevich D.L., Grigoryev E.V. Monitoring mikrotsirkulyatsii v kriticheskikh sostoy aniyakh: vozmozhnosti i ogranicheniya. Obshchaya Reanimatologiya. [Monitoring the microcirculation in critical conditions: possibilities and limitations. General Reanimatology]. 2012; 8 (2): 74–78. http://dx.doi.org/10.15360/181397792012274. [In Russ.]
5. De Backer D., OspinaTascon G., Salgado D., Favory R., Creteur J., Vincent J.L. Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med. 2010; 36 (11): 1813–1825. http://dx.doi.org/10.1007/s0013401020053. PMID: 20689916
6. Eriksson S., Nilsson J., Sturesson C. Noninvasive imaging of microcirculation: a technology review. Med. Devices (Auckl). 2014; 7: 445–452. http://dx.doi.org/10.2147/MDER.S51426. PMID: 25525397
7. Groner W., Winkelman J.W., Harris A.G., Ince C., Bouma G.J., Messmer K., Nadeau R.G. Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat. Med. 1999; 5 (10): 1209–1212. http://dx.doi.org/10.1038/13529. PMID: 10502828
8. Goedhart P., Khalilzada M., Bezemer R., Merza J., Ince C. Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ringbased imaging modality for clinical assessment of the microcirculation. Optics Express. 2007; 15 (23): 15101–15114. http://dx.doi.org/10.1364/OE.15.015101. PMID: 19550794
9. Mathura K.R., Vollebregt K.C., Boer K., De Graaff J.C., Ubbink D.T., Ince C. Comparison of OPS imaging and conventional capillary microscopy to study the human microcirculation. J. Appl. Physiol (1985). 2001; 91 (1): 74–78. PMID: 11408415
10. Harris A.G., Sinitsina I., Messmer K. Validation of OPS imaging for microvascular measurements during isovolumic hemodilution and low hematocrits. Am. J. Physiol. Heart Circ. Physiol. 2001; 282 (4): H1502–H1509. http://dx.doi.org/10.1152/ajpheart.00475.2001.PMID: 11893588
11. De Backer D., Hollenberg S., Boerma C., Goedhart P., Büchele G., OspinaTascon G., Dobbe I., Ince C. How to evaluate the microcircula tion: report of a round table conference. Crit. Care. 2007; 11 (5): 101. http://dx.doi.org/10.1186/cc6118. PMID: 17845716
12. Nilsson J., Eriksson S., Blind P.J., Rissler P., Sturesson C. Microcirculation changes during liver resection – a clinical study. Microvasc. Res. 2014; 94: 47–51. http://dx.doi.org/10.1016/j.mvr.2014.05.002. PMID: 24840670
13. Pennings F.A., Ince C., Bouma G.J. Continuous realtime visualization of the human cerebral microcirculation during arteriovenous malformation surgery using orthogonal polarization spectral imaging. Neurosurgery. 2006; 59 (1): 167–171. http://dx.doi.org/10.1227/01. NEU.0000219242.92669.3B. PMID: 16823313
14. Donati A., Domizi R., Damiani E., Adrario E., Pelaia P., Ince C. From macrohemodynamic to the microcirculation. Crit. Care Res. Pract. 2013; 2013: 1–8. http://dx.doi.org/10.1155/2013/892710. PMID: 23509621
15. Nilsson G.E., Tenland T., Oberg P.A. Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. IEEE Trans Biomed Eng. 1980; 27 (10): 597–604. http://dx.doi.org/10.1109/TBME. 1980.326582. PMID: 6449469
16. Stefanovska A., Bracic M. Physics of the human cardiovascular system. Contemporary Physics. 1999; 40 (1): 31–35. http://dx.doi.org/10.1080/001075199181693
17. Krupatkin A.I., Sidorov V.V. Lazernaya dopplerovskaya floumetriya mikrotsirkulyatsii krovi. Rukovodstvo dlya vrachei. [Laser Doppler flowmetry of blood microcirculation. Guidelines for doctors]. Moscow: Meditsina Publishers; 2005: 256. [In Russ.]
18. Kozlov V.I., Azizov G.A., Gurova O.A., Litvin F.B. Lazernaya dopplerovskaya floumetriya v otsenke sostoyaniya i rasstroistv mikrotsirkulyatsii krovi. Metodicheskoe posobie dlya vrachei. [Laser Doppler flowmetry in assessing the condition and disorder of blood microcirculation. Methodological manual for doctors]. Moscow: RUDN; 2012: 32. [In Russ.]
19. Borgström P., Schmidt J.A., Bruttig S.P., Intaglietta M., Arfors K.E. Slow wave flowmotion in rabbit skeletal muscle after acute fixedvolume hemorrhage. Circ. Shock. 1992; 36 (1): 57–61. PMID: 1551185
20. Tonnesen J., Pryds A., Larsen E.H., Paulson O.B., Hauerberg J., Knudsen G.M. Laser Doppler flowmetry is valid for measurement of cerebral blood flow autoregulation lower limit in rats. Exp. Physiol. 2005; 90 (3): 349–355. http://dx.doi.org/10.1113/expphysiol.2004.029512. PMID: 15653714
21. Ryzhkov I.A., Kirsanova A.K., Zarzhetsky Yu.V. Amplitudnochastotnyi spektr kolebanii mozgovogo krovotoka pri gemorragicheskom shoke. Obshchaya Reanimatologiya. [The amplitude and frequency spectrum of cerebral blood flow fluctuations in hemorrhagic shock. General Reanimatology]. 2014; 10 (2): 6–17. http://dx.doi.org/10.15360/1813977920142617. [In Russ.]
22. Forrester K.R., Tulip J., Leonard C., Stewart C., Bray R.C. A laser speck le imaging technique for measuring tissue perfusion. IEEE Trans Biomed Eng. 2004; 51 (11): 2074–2084. http://dx.doi.org/10.1109/TBME.2004.834259. PMID: 15536909
23. Briers J.D. Laser Doppler, speckle and related techniques for blood per fusion mapping and imaging. Physiol. Meas. 2001; 22 (4): R35–R66. http://dx.doi.org/10.1088/09673334/22/4/201. PMID: 11761081
24. Krupatkin A.I. Kolebaniya krovotoka – novyi diagnosticheskii yazyk v issledovanii mikrotsirkulyatsii. [Fluctuations in blood flow — a new diagnostic study of the language in the microcirculation]. Regionarnoe Krovoobrashchenie i Mikrotsirkulyatsiya. 2014; 13 (1): 83–99. [In Russ.]
25. Aalkjær C., Boedtkjer D., Matchkov V. Vasomotion — what is currently thought? Acta Physiol. (Oxf). 2011; 202 (3): 253–269. http://dx.doi.org/10.1111/j.17481716.2011.02320.x. PMID: 21518271
26. Li Z., Tam E.W., Kwan M.P., Mak A.F., Lo S.C., Leung M.C. Effects of prolonged surface pressure on the skin blood flowmotions in anaes thetized rats—an assessment by spectral analysis of laser Doppler flowmetry signals. Phys. Med. Biol. 2006; 51 (10): 2681–94. http://dx.doi.org/10.1088/00319155/51/10/020. PMID: 16675876
27. Aleksandrin V.V. Veivletanaliz mozgovogo krovotoka u krys. [Waveletanalysis of cerebral blood flow of rats]. Regionarnoe Krovoobrashchenie i Mikrotsirkulyatsiya. 2010; 9 (4): 63–66. [In Russ.]
28. Colantuoni A., Bertuglia S., Intaglietta M. Effects of anesthesia on the spontaneous activity of the microvasculature. Int. J. Microcirc. Clin. Exp. 1984; 3 (1): 13–28. PMID: 6480227
29. Schmidt J.A., Breit G.A., Borgström P., Intaglietta M. Induced periodic hemodynamics in skeletal muscle of anesthetized rabbits, studied with multiple laser Doppler flow probes. Int. J. Microcirc. Clin. Exp. 1995; 15 (1): 28–36. http://dx.doi.org/10.1159/000178946. PMID: 7558623
30. SchmidtLucke C., Borgström P., SchmidtLucke J.A. Low frequency flowmotion/(vasomotion) during pathophysiological conditions. Life Sci. 2002; 71 (23): 2713–2728. PMID: 12383879
31. Sakurai T., Terui N. Effects of sympathetically induced vasomotion on tissuecapillary fluid exchange. Am. J. Physiol. Heart. Circ. Physiol. 2006; 291 (4): H1761–H1767. http://dx.doi.org/10.1152/ajpheart.00280.2006. PMID: 16731646
32. Thorn C.T., Kyte H., Slaff D.W., Shore A.C. An association between vasomotion and oxygen extraction. Am. J. Physiol. Heart. Circ. Physiol. 2011; 301 (2): H442– H449. http://dx.doi.org/10.1152/ajpheart.01316.2010. PMID: 21602466
33. Intaglietta M. Vasomotion and flowmotion: physiological mechanisms and clinical evidence. Vasc. Med. 1990; 1 (2): 101–112. http://dx.doi.org/10.1177/1358836X9000100202
34. Knotzer H., Hasibeder W.R. Microcirculatory function monitoring at the bedside – a view from the intensive care. Physiol. Meas. 2007; 28 (9): R65–R86. http://dx.doi.org/10.1088/09673334/28/9/R01.PMID: 17827646
35. De Backer D., Donadello K., Cortes D.O. Monitoring the microcirculation. J. Clin. Monit. Comput. 2012; 26 (5): 361–366. http://dx.doi.org/10.1007/s1087701293838. PMID: 22833180
36. Moroz V.V., Ryzhkov I.A. Ostraya krovopoterya: regionarnyi krovotok i mikrotsirkulyatsiya (obzor, chast I). Obshchaya Reanimatologiya. [Regional blood flow and microcirculation (review, part I). General Reanimatology]. 2016; 12 (2): 66–89. http://dx.doi.org/10.15360/18139779201626689. [In Russ.]
37. Morman D., Heller L. Fiziologiya serdechnososudistoi sistemy. [Physiology of the cardiovascular system]. SanktPeterburg: Piter; 2000: 256. [In Russ.]
38. Schlichtig R., Kramer D.J., Pinsky M.R. Flow redistribution during progressive hemorrhage is a determinant of critical O2 delivery. J. Appl. Physiol (1985). 1991; 70 (1): 169–178. PMID: 2010373
39. Witzleb E. Funktsii sosudistoi sistemy. V kn.: Shmidt P., Thews G. (red.). Fiziologiya cheloveka. [The functions of the vascular system. In: Shmidt P., Thews G. (eds.). Human Physiology]. Moscow: Mir; 2004: 498–566. [In Russ.]
40. Braverman I.M., Keh A., Goldminz D. Correlation of laser Doppler wave patterns with underlying microvascular anatomy. J. Invest. Dermatol. 1990; 95 (3): 283–286. http://dx.doi.org/ 10.1111/15231747.ep12484917. PMID: 2143522
41. Bond R.F. A review of the skin and muscle hemodynamics during hem orrhagic hypotension and shock. Adv. Shock Res. 1982; 8: 53–70. PMID: 6753542
42. Colantuoni A., Bertuglia S., Intaglietta M. Microvessel diameter changes during hemorrhagic shock in unanesthetized hamsters. Microvasc. Res. 1985; 30 (2): 133–142. http://dx.doi.org/10.1016/00262862(85)900457. PMID: 4046867
43. Sakai H., Hara H., Tsai A.G., Tsuchida E., Johnson P.C., Intaglietta M. Changes in resistance vessels during hemorrhagic shock and resuscita tion in conscious hamster model. Am. J. Physiol. 1999; 276 (2 Pt 2): H563–H571. PMID: 9950858
44. Kerger H., Waschke K.F., Ackern K.V., Tsai A.G., Intaglietta M. Systemic and microcirculatory effects of autologous whole blood resuscitation in severe hemorrhagic shock. Am. J. Physiol. 1999; 276 (6 Pt 2): H2035–H2043. PMID: 10362685
45. Kaiser M.L., Kong A.P., Steward E., Whealon M., Patel M., Hoyt D.B., Cinat M.E. Laser Doppler imaging for early detection of hemorrhage. J. Trauma. 2011; 71 (2): 401–406. http://dx.doi.org/10.1097/TA.0b013e318225458c. PMID: 21825944
46. Pestel G.J., Fukui K., Kimberger O., Hager H., Kurz A., Hiltebrand L.B. Hemodynamic parameters change earlier than tissue oxygen tension in hemorrhage. J. Surg. Res. 2010; 160 (2): 288–293. http://dx.doi.org/10.1016/j.jss.2008.11.002. PMID: 19482294
47. Ryzhkov I.A., Novoderzhkina I.S., Zarzhetsky Yu.V. Amplitudnochastot nyi spektr kolebanii kozhnogo krovotoka pri ostroi krovopotere (eksper imentalnoe issledovanie). Obshchaya Reanimatologiya. [The amplitude and frequency spectrum of skin blood flow fluctuations in acute blood loss (an experimental study). General Reanimatology]. 2014; 10 (5): 6–17. http://dx.doi.org/10.15360/1813977920145617. [In Russ.]
48. Ryzhkov I.A., Novoderzhkina I.S., Zarzhetsky Yu.V. Vliyanie perftorana na regulyatsiyu kozhnogo krovotoka pri ostroi krovopotere (eksperimentalnoe issledovanie). Obshchaya Reanimatologiya. [Effect of per fluorane on the regulation of skin blood flow in acute blood loss: (an experimental study). General Reanimatology]. 2015; 11 (6): 19–27. http://dx.doi.org/10.15360/18139779201561927. [In Russ.]
49. Kosovskikh A.A., Churlyaev Yu.A., Kan S.L., Lyzlov A.N., Kirsanov T.V., Vartanyan A.R. Tsentralnaya gemodinamika i mikrotsirkulyatsiya pri kriticheskikh sostoyaniyakh. Obshchaya Reanimatologiya. [Central hemodynamics and microcirculation in critical conditions. General Reanimatology]. 2013; 9 (1): 18–22. http://dx.doi.org/10.15360/181397792013118. [In Russ.]
50. Borgström P., Bruttig S.P., Lindbom L., Intaglietta M., Arfors K.E. Microvascular responses in rabbit skeletal muscle after fixed volume hemorrhage. Am. J. Physiol. 1990; 259 (1 Pt 2): H190–H196. PMID: 2375405
51. Zhao K.S., Junker D., Delano F.A., Zweifach B.W. Microvascular adjust ments during irreversible hemorrhagic shock in rat skeletal muscle. Microvasc. Res. 1985; 30 (2): 143–153. PMID: 2931578
52. Gutierrez G., Marini C., Acero A.L., Lund N. Skeletal muscle PO2 during hypoxemia and isovolemic anemia. J. Appl. Physiol. 1990; 68 (5): 2047–2053. PMID: 2361907
53. Parthasarathi K., Lipowsky H.H. Capillary recruitment in response to tissue hypoxia and its dependence on red blood cell deformability. Am. J. Physiol. 1999; 277 (6 Pt 2): H2145–H2157. PMID: 10600832
54. Meyer J.U., Borgström P., Lindbom L., Intaglietta M. Vasomotion pat terns in skeletal muscle arterioles during changes in arterial pressure. Microvasc. Res. 1988; 35 (2): 193–203. http://dx.doi.org/10.1016/00262862(88)900623. PMID: 3367792
55. Schmidt J.A., Borgström P., Intaglietta M. Neurogenic modulation of periodic hemodynamics in rabbit skeletal muscle. J. Appl. Physiol (1985). 1993; 75 (3): 12161221. PMID: 8226532
56. Rücker M., Strobel O., Vollmar B., Roesken F., Menger M.D. Vasomotion in critically perfused muscle protects adjacent tissues from capillary perfusion failure. Am. J. Physiol. Heart Circ. Physiol. 2000; 279 (2): H550–H558. PMID: 10924053
57. Wan Z., Sun S., Ristagno G., Weil M.H., Tang W. The cerebral microcir culation is protected during experimental hemorrhagic shock. Crit. Care Med. 2010; 38 (3): 928–932. http://dx.doi.org/10.1097/CCM.0b013e3181cd100c. PMID: 20068466
58. Dubin A., Pozo M.O., Ferrara G., Murias G., Martins E., Canullán C., Canales H.S., Kanoore Edul V.S., Estenssoro E., Ince C. Systemic and microcirculatory responses to progressive hemorrhage. Intensive Care Med. 2009; 35 (3): 556–564. http://dx.doi.org/10.1007/s0013400813850. PMID: 19127356
59. Torres Filho I.P., Contaifer Junior D., Garcia S., Neves L. da S. Vasomotion in rat mesentery during hemorrhagic hypotension. Life Sci. 2001; 68 (9): 1057–1065. PMID: 11212869
60. Fruchterman T.M., Spain D.A., Wilson M.A., Harris P.D., Garrison R.N. Complement inhibition prevents gut ischemia and endothelial cell dys function after hemorrhage/resuscitation. Surgery. 1998; 124 (4): 782–791. http://dx.doi.org/10.1067/msy.1998.91489. PMID: 9781002
61. Balogh Z., Wolfárd A., Szalay L., Orosz E., Simonka J.A., Boros M. Dalteparin sodium treatment during resuscitation inhibits hemorrhag ic shockinduced leukocyte rolling and adhesion in the mesenteric microcirculation. J. Trauma. 2002; 52 (6): 1062–1069. http://dx.doi.org/10.1097/0000537320020600000007. PMID: 12045631
62. Nakajima Y., Baudry N., Duranteau J., Vicaut E. Microcirculation in intestinal villi: a comparison between hemorrhagic and endotoxin shock. Am. J. Respir. Crit. Care Med. 2001; 164 (8 Pt 1): 1526–1530. http://dx.doi.org/10.1164/ajrccm.164.8.2009065. PMID: 11704607
63. Vollmar B., Preissler G., Menger M.D. Hemorrhagic hypotension induces arteriolar vasomotion and intermittent capillary perfusion in rat pan creas. Am. J. Physiol. 1994; 267 (5 Pt 2): H1936–H1940. PMID: 7977824
64. Bond R.F., Bond C.H., Johnson G. 3rd. Intrinsic versus extrinsic region al vascular control during hemorrhagic hypotension and shock. Circ. Shock. 1986; 18 (2): 115–129. PMID: 3948337
65. Chun K., Zhang J., Biewer J., Ferguson D., Clemens M.G. Microcirculatory failure determines lethal hepatocyte injury in ischemic/reperfused rat livers. Shock. 1994; 1 (1): 3–9. http://dx.doi.org/10.1097/0002438219940100000002. PMID: 7743324
66. Legrand M., Mik E.G., Balestra G.M., Lutter R., Pirracchio R., Payen D., Ince C. Fluid resuscitation does not improve renal oxygenation during hemorrhagic shock in rats. Anesthesiology. 2010; 112 (1): 119–127. http://dx.doi.org/10.1097/ALN.0b013e3181c4a5e2. PMID: 19996951
67. Wu C.Y., Yeh Y.C., Chien C.T., Chao A., Sun W.Z., Cheng Y.J. Laser speckle contrast imaging forassessing microcirculatory changes in multiple splanchnic organs and the gracilismuscle during hemorrhagic shock and fluid resuscitation. Microvasc. Res. 2015; 101: 55–61. http://dx.doi.org/10.1016/j.mvr.2015.06.003. PMID: 26093177
68. Burnstock G. Integration of factors controlling vascular tone. Overview. Anesthesiology. 1993; 79 (6): 1368–1380. http://dx.doi.org/10.1097/0000054219931200000029. PMID: 8267212
69. Kuo L., Chilian W.M., Davis M.J. Interaction of pressure and flow induced responses in porcine coronary resistance vessels. Am. J. Physiol. 1991; 261 (6 Pt 2): H1706–H1715. PMID: 1750529
70. Vetterlein F., Schmidt G. Effects of propranolol and epinephrine on den sity of capillaries in rat heart. Am. J. Physiol. 1984; 246 (2 Pt 2): H189–H196. PMID: 6696131 kriticheskikh sostoyaniyakh. Obshchaya Reanimatologiya. [Central hemodynamics and microcirculation in critical conditions. General Reanimatology]. 2013; 9 (1): 18–22. http://dx.doi.org/10.15360/181397792013118. [In Russ.]
71. Grover G.J., Weiss H.R. Coronary adjustments to graded hypotension in rabbits. Circ. Shock. 1987; 23 (1): 71–80. PMID: 3690816
72. Horton J.W. Hemorrhagic shock depresses myocardial contractile function in the guinea pig. Circ. Shock. 1989; 28 (1): 23–35. PMID: 2731319
73. Parker J.L., Shelton J.A., Defily D.V., Gute D., Laughlin M.H., Adams H.R. Coronary vascular function after hemorrhagic hypotension in dogs. Circ. Shock. 1993; 41 (2): 119–129. PMID: 8242880
74. Adachi T., Hori S., Miyazaki K., Nakagawa M., Inoue S., Ohnishi Y., Nakazawa H., Aikawa N., Ogawa S. Inhibition of nitric oxide synthesis aggravates myocardial ischemia in hemorrhagic shock in constant pressure model. Shock. 1998; 9 (3): 204– 209. http://dx.doi.org/10.1097/0002438219980300000008. PMID: 9525328
75. Cabrales P., Tsai A.G., Intaglietta M. Exogenous nitric oxide induces protection during hemorrhagic shock. Resuscitation. 2009; 80 (6): 707–712. http://dx.doi.org/10.1016/j.resuscitation.2009.03.001.PMID: 19362408
76. Remizova M.I., Gerbut K.A. Rol oksida azota v razvitii tsentralizatsii krovoobrashcheniya pri gemorragicheskom shoke v eksperimente. [Role of nitric oxide in development of centralization of blood circulation upon experimental hemorrhagic shock]. Byulleten Eksperimentalnoi Biologii i Meditsiny. 2014; 157 (1): 27–29. http://dx.doi.org/10.1007/s1051701424824. PMID: 24906962. [In Russ.]
77. Horton J.W., Poehlmann D.S. Regional coronary blood flow in canine hemorrhagic shock. Circ. Shock. 1987; 23 (4): 271–283. PMID: 3690819
78. Kleen M., Habler O., Meisner F., Kemming G., Pape A., Messmer K. Effects of primary resuscitation from shock on distribution of myocar dial blood flow. J. Appl. Physiol. (1985). 2000; 88 (2): 373–385. PMID: 10658001
79. Dolgikh V.T., Meerson P.Z., Merginsky E.M., Rusakov V.V., Korpacheva O.V. Functional metabolic heart impairment after acute lethal hemorrhage followed by resuscitation. Resuscitation. 1991; 21 (2–3): 181–190. http://dx.doi.org/10.1016/03009572(91)90045Z. PMID: 1650021
80. Kontos H.A., Wei E.P. Oxygendependent mechanisms in cerebral autoregulation. Ann. Biomed. Eng. 1985; 13 (3–4): 329–334. http://dx.doi.org/ 10.1007/BF02584251. PMID: 4037462
81. Paulson O.B., Strandgaard S., Edvinsson L. Cerebral autoregulation. Cerebrovasc. Brain Metab. Rev. 1990; 2 (2): 161–192. PMID: 2201348
82. Kovách A.G. Cerebral circulation in hypoxia and ischemia. Prog. Clin. Biol. Res. 1988; 264: 147–158. PMID: 3289019
83. Waschke K.F., Riedel M., Lenz C., Albrecht D.M., van Ackern K., Kuschinsky W. Regional heterogeneity of cerebral blood flow response to graded pressurecontrolled hemorrhage. J. Trauma. 2004; 56 (3): 591–603. http://dx.doi.org/10.1097/01.TA.0000075335.35705.E2.PMID: 15128131
84. Slater G., Vladeck B.C., Bassin R., Brown R.S., Shoemaker W.C. Sequential changes in cerebral blood flow and distribution of flow within the brain during hemorrhagic shock. Ann. Surg. 1975; 181 (1): 1–4. http://dx.doi.org/10.1097/0000065819750100000001. PMID: 1119856
85. Tuor U.I., Farrar J.K. Pial vessel caliber and cerebral blood flow during hemorrhage and hypercapnia in the rabbit. Am. J. Physiol. 1984; 247 (1 Pt 2): H40– H51. PMID: 6742212
86. Werner C., Lu H., Engelhard K., Unbehaun N., Kochs E. Sevoflurane impairs cerebral blood flow autoregulation in rats: reversal by nonse lective nitric oxide synthase inhibition. Anesth. Analg. 2005; 101 (2): 509–516. http://dx.doi.org/10.1213/01.ANE.0000160586.71403.A4.PMID: 16037169
87. Jones S.C., Radinsky C.R., Furlan A.J., Chyatte D., PerezTrepichio A.D. Cortical NOS inhibition raises the lower limit of cerebral blood flow arterial pressure autoregulation. Am. J. Physiol. 1999; 276 (4 Pt 2): H1253–H1262. PMID: 10199850
88. Aleksandrin V.V. Sokhranenie postoyanstva napryazheniya sosudis tykh stenok pialnykh arteriol pri autoregulyatsii mozgovogo krovoto ka. [Preservation of constant of pial arteriolar wall tension during the autoregulation of the cerebral blood flow]. Regionarnoe Krovoobrashchenie i Mikrotsirkulyatsiya. 2007; 6 (4): 56–59. [In Russ.]
89. Preckel M.P., Leftheriotis G., Ferber C., Degoute C.S., Banssillon V., Saumet J.L. Effect of nitric oxide blockade on the lower limit of the cortical cerebral autoregulation in pentobarbitalanaesthetized rats. Int. J. Microcirc. Clin. Exp. 1996; 16 (6): 277–283. http://dx.doi.org/10.1159/000179186. PMID: 9049705
90. Faraci F.M., Baumbach G.L., Heistad D.D. Myogenic mechanisms in the cerebral circulation. J. Hypertens Suppl. 1989; 7 (4): S61–S64. PMID: 2681598
91. Morita Y., Hardebo J.E., Bouskela E. Influence of cerebrovascular sympathetic, parasympathetic, and sensory nerves on autoregulation and spontaneous vasomotion. Acta Physiol. Scand. 1995; 154 (2): 121–130. http://dx.doi.org/10.1111/j.17481716.1995.tb09894.x. PMID: 7572208
92. Sharma A.C., Singh G., Gulati A. Decompensation characterized by decreased perfusion of the heart and brain during hemorrhagic shock: role of endothelin1. J. Trauma. 2002; 53 (3): 531–536. http://dx.doi.org/10.1097/01.TA.0000019797.30036.3F. PMID: 12352492
93. Cavus E., Meybohm P., Doerges V., Hugo H.H., Steinfath M., Nordstroem J., Scholz J., Bein B. Cerebral effects of three resuscitation protocols in uncontrolled haemorrhagic shock: a randomised controlled experimental study. Resuscitation. 2009; 80 (5): 567–572. http://dx.doi.org/10.1016/j.resuscitation.2009.01.013. PMID: 19217706
94. Navarro L.H., Lima R.M., Khan M., Dominguez W.G., Voigt R.B., Kinsky M.P., Mileski W.J., Kramer G.C. Continuous measurement of cerebral oxygen saturation (rSO2) for assessment of cardiovascular status during hemorrhagic shock in a swine model. J. Trauma Acute Care Surg. 2012; 73 (2 Suppl 1): 140–146. http://dx.doi.org/10.1097/TA.0b013e3182606372. PMID: 22847085
95. Sun N., Luo W., Li L.Z., Luo Q. Monitoring hemodynamic and metabolic alterations during severe hemorrhagic shock in rat brains. Acad. Radiol. 2014; 21 (2): 175–184. http://dx.doi.org/10.1016/j.acra.2013.11.017. PMID: 24439331
96. Aleksandrin V.V. Dinamika veivletspektra pri autoregulyatsii mozgovogo krovotoka. [The change of wavelet spectrum during autoregulation of cerebral blood flow]. Regionarnoe Krovoobrashchenie i Mikrotsirkulyatsiya. 2013; 12 (3): 47–52. [In Russ.]
97. MoritaTsuzuki Y., Bouskela E., Hardebo J.E. Vasomotion in the rat cerebral microcirculation recorded by laserDoppler flowmetry. Acta Physiol. Scand. 1992; 146 (4): 431–439. http://dx.doi.org/10.1111/j.17481716.1992.tb09444.x. PMID: 1492561
98. MoritaTsuzuki Y., Bouskela E., Hardebo J.E. Effects of nitric oxide synthesis blockade and angiotensin II on blood flow and spontaneous vasomotion in the rat cerebral microcirculation. Acta Physiol. Scand. 1993; 148 (4): 449–454. http://dx.doi.org/10.1111/j.17481716.1993.tb09581.x. PMID: 8213199
99. Ryzhkov I.A., Novoderzhkina I.S., Zarzhetsky Yu.V. Vliyanie perftorana na amplitudnochastotnyi spektr kolebanii mozgovogo krovotoka pri gemorragicheskoi gipotenzii i v reperfuzionnom periode. Obshchaya Reanimatologiya. [Effect of perfluorane on the amplitudefrequency spectrum of fluctuations in cerebral blood flow in hemorrhagic hypotension and during the reperfusion period. General Reanimatology]. 2015; 11 (4): 14–22. http://dx.doi.org/10.15360/18139779201541422. [In Russ.]
100. Wan J.J., Cohen M.J., Rosenthal G., Haitsma I.K., Morabito D.J., Derugin N., Knudson M.M., Manley G.T. Refining resuscitation strategies using tissue oxygen and perfusion monitoring in critical organ beds. J. Trauma. 2009; 66 (2): 353–357. http://dx.doi.org/10.1097/TA.0b013e318195e222. PMID: 19204507
101. Folkov B., Nil E. Krovoobrashchenie. [Blood circulation]. Moscow: Meditsina Publishers; 1976: 463. [In Russ.]
102. Darlington D.N., Jones R.O., Marzella L., Gann D.S. Changes in region al vascular resistance and blood volume after hemorrhage in fed and fasted awake rats. J. Appl. Physiol. (1985). 1995; 78 (6): 2025–2032. PMID: 7665395
103. Golubev A.M., Moroz V.V., Sundukov D.V. Patogenez ostrogo respiratornogo distresssindroma. Obshchaya Reanimatologiya. [Pathogenesis of acute respiratory distress syndrome. General Reanimatology]. 2012; 8 (4): 13–21. http://dx.doi.org/10.15360/181397792012413. [In Russ.]
104. Dutton R.P. Current concepts in hemorrhagic shock. Anesthesiol. Clin. 2007; 25 (1): 23–34. http://dx.doi.org/10.1016/j.atc.2006.11.007.PMID: 17400153
105. Conhaim R.L., Kluesner K.A., Watson K.E., MunozdelRio A., Heisey D.M., Harms B.A. Hemorrhage progressively disturbs interalveolar per fusion in the lungs of rats. Shock. 2008; 29 (3): 410–416. http://dx.doi.org/10. 1097/shk.0b013e318145a342. PMID: 17704732
106. Andreyeva S.A., Dolgikh V.T. Strukturnofunktsionalnye izmeneniya arterii malogo kruga krovoobrashcheniya v otdalennom postgemor ragicheskom periode. Obshchaya Reanimatologiya. [Late posthemor rhagic structural and functional changes in pulmonary circulation arteries. General Reanimatology]. 2008; 4 (6): 27–33. http://dx.doi.org/10.15360/181397792008627. [In Russ.]
Review
For citations:
Moroz V.V., Ryzhkov I.A. Acute Blood Loss: Regional Blood Flow and Microcirculation (Review, Part II). General Reanimatology. 2016;12(5):65-94. (In Russ.) https://doi.org/10.15360/1813-9779-2016-5-65-94