Effect of Preconditioning with Desflurane on Phosphorylated Glycogen Synthase Kinase 3β Contents in an Experiment
https://doi.org/10.15360/1813-9779-2016-6-8-15
Abstract
The purpose of this study is to determine and evaluate if the preconditioning with desflurane depends on level of phosphoGSK3β.
Material and methods. White outbred male rats (56) were randomly allocated to 6 groups. Ischemia/reperfusion modeling was performed using V. G.Korpachev's technique. The reference group consisted of sham (falselyoperated) animals. The second group underwent global ischemia/reperfusion after anesthesia with chloral hydrate. The next two groups were treated with either sevoflurane or desflurane at 1 MAC. In the final two groups, the use of same anes thetics was followed by global ischemia/reperfusion. The concentration of phosphoGSK3β in brain homogenate was determined using western blotting. A statistical analysis was performed using the MannWhitney Utest, and the difference was considered significant at P<0.05. A threeminute ischemia with subsequent reperfusion resulted in a significant increase in the concentration of phosphoGSK3β vs. the reference group (620437 relative units vs. 304574 relative units, respectively, P<0.05). Similar results were observed in groups where animals received inhaled sevoflurane (743166 relative units) and desflurane (667119 relative units) alone (P<0.05). In the ischemia/reperfusion group, the concentration of phosphoGSK3β was equal to 922231 relative units after inhalation of sevoflurane (P<0.05 vs. the reference group). In the group with a combination of desflurane and ischemia/reperfusion, the enzyme concentration increased up to 677084 relative units (P<0.05 vs. reference group). No difference in concentrations of the enzyme between groups receiving inhaled anesthetics with and without ischemia/perfusion was found. In addition, the concentration of this enzyme was comparable with that in the ischemia/reperfusion group.
Conclusion. Two anesthetics under testing possess similarly increased concentration of phosphoGSK3β in rat brain homogenates.
Keywords
About the Authors
V. V. LikhvantsevRussian Federation
61/2 Shchepkin Str., Moscow 129110
25 Petrovka Str., Build. 2, Moscow 107031
O. A. Grebenchikov
Russian Federation
61/2 Shchepkin Str., Moscow 129110
25 Petrovka Str., Build. 2, Moscow 107031
R. A. Cherpakov
Russian Federation
25 Petrovka Str., Build. 2, Moscow 107031
Yu. V. Skripkin
Russian Federation
61/2 Shchepkin Str., Moscow 129110
25 Petrovka Str., Build. 2, Moscow 107031
K. Yu. Borisov
Russian Federation
61/2 Shchepkin Str., Moscow 129110
References
1. Likhvantsev V.V., Skripkin Y.V., Grebenchikov O.A. Izuchenie klinich eskoi znachimosti anesteticheskogo prekonditsionirovaniya (otkrytaya baza dannykh). Obshchaya Reanimatologiya. [Investigation of the clinical value of anesthetic preconditioning (an openaccess database). General Reanimatology]. 2014; 10 (4): 82– 85. http://dx.doi.org/10.15360/18139779201448285. [In Russ.]
2. Kapinya K.J., Lowl D., Futterer C., Maurer M., Waschke K., Isaev N.K., Dirnagl U. Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent. Stroke. 2002; 33 (7): 1889–1898. http://dx.doi.org/10.1161/01.STR.0000020092.41820.58. PMID: 12105371
3. Kitano H., Kirsch J.R., Hurn P.D., Murphy S.J. Inhalational anesthetics as neuroprotectants or chemical preconditioning agents in ischemic brain. J. Cereb. Blood Flow Metab. 2007; 27 (6): 1108–1128. http://dx.doi.org/10.1038/sj.jcbfm.9600410. PMID: 17047683
4. Zheng S., Zuo Z. Isoflurane preconditioning induces neuroprotection against ischemia via activation of p38 mitogenactivated protein kinase. Mol. Pharmacol. 2004; 65 (5): 1172–1180. http://dx.doi.org/10.1124/mol.65.5.1172. PMID: 15102945
5. Sakai H., Sheng H., Yates R.B., Ishida K., Pearlstein R.D., Warner D.S. Isoflurane provides longterm protection against focal cerebral ischemia in the rat. Anesthesiology. 2007; 106 (1): 92–99. http://dx.doi.org/10.1097/0000054220070100000017. PMID: 17197850
6. Pape M., Engelhard K., Eberspächer E., Hollweck R., Kellermann K., Zintner S., Hutzler P., Werner C. The longterm effect of sevoflurane on neuronal cell damage and expression of apoptotic factors after cerebral ischemia and reperfusion in rats. Anesth. Analg. 2006; 103 (1): 173–179. http://dx.doi.org/10.1213/01.ane.0000222634.51192.a4. PMID: 16790648
7. Juhaszova M., Zorov D.B., Gleichmann M., Mattson M.P. The identity and regulation of the mitochondrial permeability transition pore where the known meets the unknown. Ann. N. Y. Acad. Sci. 2008; 1123: 197–212. http://dx.doi.org/10.1196/annals.1420.023. PMID: 18375592
8. Zorov D.B., Juhaszova M., Yaniv Y., Nuss H.B., Wang S., Sollott S.J. Regulation and pharmacology of the mitochondrial permeability transition pore. Cardiovascular. Research. 2009; 83 (2): 213–225. http://dx.doi.org/10.1093/cvr/cvp151. PMID: 19447775
9. Borisov K.Yu., Moroz V.V., Grebenchikov O.A., Plotnikov E.Yu., Levikov D.I., Cherpakov R.A., Likhvantsev V.V. Vliyanie propofola na anesteticheskoe prekonditsionirovanie miokarda sevofluranom v eksperimente. Obshchaya Reanimatologiya. [Effect of propofol on sevofluraneinduced myocardial preconditioning in the experiment. General Reanimatology]. 2013; 9 (4): 30–35. http://dx.doi.org/10.15360/181397792013430. [In Russ.]
10. Kawai K., Nitесka L., Ruetzler C.A., Nagashima G., Joó F., Mies G., Nowak T.S. Jr., Saito N., Lohr J.M., Klatzo I. Global cerebral ischemia associated with cardiac arrest in thе rat: I. Dynamiсs of еarlу neuronal сhangеs. J. Cеrеb. Blood Flow Меt. 1992; 12 (2): 238–249. http://dx.doi.org/10.1038/jcbfm.1992.34. PMID: 1548296
11. Korpachev V.G., Lysenkov S.P., Tel L.Z. Modelirovanie klinicheskoi smerti i postreanimatsionnoi bolezni u krys. [Modeling clinical death and postresuscitation disease in rats]. Patologicheskaya Fiziologiya i Eksperimentalnaya Terapiya. 1982; 3: 78—80. PMID: 7122145. [In Russ.]
12. Hunter D.R., Haworth R.A. The Ca2+induced membrane transition in mitochondria. I. The protective mechanisms. Arch. Biochem. Biophys. 1979; 195 (2): 453–459. PMID: 383019
13. Griffiths E.J., Halestrap A.P. Mitochondrial nonspecific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem. J. 1995; 307 (Pt 1): 93–98. http://dx.doi.org/10.1042/bj3070093. PMID: 7717999
14. Kroemer G., Dallaporta B., RescheRigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 1998; 60: 619–642. http://dx.doi.org/10.1146/annurev.physiol.60.1.619. PMID: 9558479
15. Juhaszova M., Zorov D.B., Kim S.H., Pepe S., Fu Q., Fishbein K.W., Ziman B.D., Wang S., Ytrehus K., Antos C.L., Olson E.N., Sollott S.J. Glycogen synthase kinase3в mediates convergence of protection sig naling to inhibit the mitochondrial permeability transition pore. J. Clin. Invest. 2004; 113 (11): 1535–1549. PMID: 15173880
16. Shevchenko Yu.L., Gorokhovatsky Yu.I., Azizova O.A., Gudymovich V.G. Sevofluran v kardiokhirurgii. [Sevoflurane in cardiac surgery]. Kardiologiya i SerdechnoSosudistaya Khirurgiya. 2009; 2 (2): 58–65. [In Russ.]
17. Juhaszova M., Zorov D.B., Yaniv Y., Nuss H.B., Wang S., Sollott S.J. Role of glycogen synthase kinase3b in cardioprotection. Circ. Res. 2009; 104 (11): 1240– 1252. http://dx.doi.org/10.1161/CIRCRESAHA.109.197996. PMID: 19498210
Review
For citations:
Likhvantsev V.V., Grebenchikov O.A., Cherpakov R.A., Skripkin Yu.V., Borisov K.Yu. Effect of Preconditioning with Desflurane on Phosphorylated Glycogen Synthase Kinase 3β Contents in an Experiment. General Reanimatology. 2016;12(6):8-15. https://doi.org/10.15360/1813-9779-2016-6-8-15