Preview

General Reanimatology

Advanced search

Pathophysiological Aspects of Hyperoxia in Anesthesiologist-Reanimatologist's Practice

https://doi.org/10.15360/1813-9779-2017-3-83-93

Abstract

The aim of the review is to present potentially negative effects of hyperoxia in various groups of critically ill patients, including those after cardiac arrest, brain injury or stroke, and in cases of sepsis. It was noted that in cases of these pathological processes and nosological forms there were evidences that hyperoxia could have a damaging effect, and that oxygen should be prescribed on an individual basis depending on the assessment of the current oxy- gen requirement. It has been established that hyperoxia commonly represent the last reserve to abrogate the progressive hypoxia. The mechanisms of adaptation of the body to hyperoxia are described and the possibility to reduce the toxic effects of oxygen with the aid of succinates is discussed. 

About the Authors

Vladimir T. Dolgikh
Omsk State Medical University, Ministry of Health of Russia
Russian Federation
12 Lenin Str., Omsk 644099


Natalia V. Govorova
Omsk State Medical University, Ministry of Health of Russia
Russian Federation
12 Lenin Str., Omsk 644099


Yury P. Orlov
Omsk State Medical University, Ministry of Health of Russia
Russian Federation
12 Lenin Str., Omsk 644099


Olga V. Korpacheva
Omsk State Medical University, Ministry of Health of Russia
Russian Federation
12 Lenin Str., Omsk 644099


Galina N. Dorovskikh
Omsk State Medical University, Ministry of Health of Russia
Russian Federation
12 Lenin Str., Omsk 644099


Anton V. Ershov
Omsk State Medical University, Ministry of Health of Russia
Russian Federation
12 Lenin Str., Omsk 644099


References

1. Smith J.L. The pathological effects due to increase of O2 tension in the air breathed. J. Physiol. 1899; 24 (1): 19–35. https://doi.org/10.1113/ jphysiol.1899.sp000746. PMID: 16992479

2. Parke R.L., Eastwood G.M., McGuinness S.P.; George Institute for Global Health; Australian and New Zealand Intensive Care Society Clinical Trials Group. Oxygen therapy in non-intubated adult intensive care patients: a point prevalence study. Crit. Care Resusc. 2013; 15 (4): 287–293. PMID: 24289510

3. de Jonge E., Peelen L., Keijzers P.J., Joore H., de Lange D., van der Voort P.H., Bosman R.J., de Waal R.A., Wesselink R., de Keizer N.F. Association between administered oxygen, arterial partial oxygen pressure and mor- tality in mechanically ventilated intensive care unit patients. Crit. Care. 2008; 12 (6): R156. https://doi.org/10.1186/cc7150. PMID: 19077208

4. Brueckl C., Kaestle S., Kerem A., Habazettl H., Krombach F., Kuppe H., Kuebler W.M. Hyperoxia-induced reactive oxygen species formation in pulmonary capillary endothelial cells in situ. Am. J. Respir. Cell Mol. Biol. 2006; 34 (4): 453–463. https://doi.org/10.1165/rcmb.2005- 0223OC. PMID: 16357365

5. Zaher T.E., Miller E.J., Morrow D.M., Javdan M., Mantell L.L. Hyperoxia-induced signal transduction pathways in pulmonary epithelial cells. Free Radic. Biol. Med. 2007; 42 (7): 897–908. 10.1016/j.freeradbiomed.2007.01.021. PMID: 17349918

6. Sjöberg F., Singer M. The medical use of oxygen: a time for critical reappraisal. J. Intern. Med. 2013; 274 (6): 505–528. 10.1111/joim.12139. PMID: 24206183

7. Orbegozo Cortés D., Puflea F., Donadello K., Taccone F.S., Gottin L., Creteur J., Vincent J.L., De Backer D. Normobaric hyperoxia alters the microcirculation in healthy volunteers. Microvasc. Res. 2015; 98: 23–28. https://doi.org/10.1016/j.mvr.2014.11.006. PMID: 25433297

8. Dell’Anna A.M., Lamanna I., Vincent J.L., Taccone F.S. How much oxy- gen in adult cardiac arrest? Crit. Care. 2014; 18 (5): 555. https://doi.org/10.1186/s13054-014-0555-4. PMID: 25636001

9. Kilgannon J.H., Jones A.E., Shapiro N.I., Angelos M.G., Milcarek B., Hunter K., Parrillo J.E., Trzeciak S.; Emergency Medicine Shock Research Network (EMShockNet) Investigators. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA. 2010; 303 (21): 2165–2171. https://doi.org/ 10.1001/jama.2010.707. PMID: 20516417

10. Stub D., Smith K., Bernard S., Nehme Z., Stephenson M., Bray J.E., Cameron P., Barger B., Ellims A.H., Taylor A.J., Meredith I.T., Kaye D.M.; AVOID Investigators. Air versus oxygen in ST-segment-elevation myocardial infarction. Circulation. 2015; 131 (24): 2143–2150. 10.1161/CIRCULATIONAHA.114.014494. PMID: 26002889

11. Hofmann R., James S.K., Svensson L., Witt N., Frick M., Lindahl B., Östlund O., Ekelund U., Erlinge D., Herlitz J., Jernberg T. Determination of the role of oxygen in suspected acute myocardial infarction trial. Am. Heart J. 2014; 167 (3): 322–328. https://doi.org/10.1016/j.ahj. 2013.09.022. PMID: 24576515

12. Elmer J., Scutella M., Pullalarevu R., Wang B., Vaghasia N., Trzeciak S., Rosario-Rivera B.L., Guyette F.X., Rittenberger J.C., Dezfulian C.; Pittsburgh Post Cardiac Arrest Service (PCAS). The association between hyperoxia and patient outcomes after cardiac arrest: analysis of a high-resolution database. Intensive Care Med. 2015; 41 (1): 49–57. https://doi.org/10.1007/s00134-014-3555-6. PMID: 25472570

13. Davis D.P., Meade W., Sise M.J., Kennedy F., Simon F., Tominaga G., Steele J., Coimbra R. Both hypoxemia and extreme hyperoxemia may be detrimental in patients with severe traumatic brain injury. J. Neurotrauma. 2009; 26 (12): 2217–2223. https://doi.org/10.1089/ neu.2009.0940. PMID: 19811093

14. Brenner M., Stein D., Hu P., Kufera J., Wooford M., Scalea T. Association between early hyperoxia and worse outcomes after traumatic brain injury. Arch. Surg. 2012; 147 (11): 1042–1046. 10.1001/arch- surg.2012.1560. PMID: 22801994

15. Normobaric oxygen therapy in acute ischemic stroke trial. https://clinicaltrials.gov/ct2/show/NCT00414726

16. Taher A., Pilehvari Z., Poorolajal J., Aghajanloo M. Effects of normobaric hyperoxia in traumatic brain injury: a randomized controlled clinical trial. Trauma Mon. 2016; 21 (1): e26772. https://doi.org/10.5812/trau- mamon.26772.e26772. PMID: 27218057

17. Asfar P., Calzia E., Huber Lang M., Ignatius A., Radermacher P. Hyperoxia during septic shock—Dr. Jekyll or Mr. Hyde? Shock. 2012; 37 (1): 122–123. https://doi.org/10.1097/SHK.0b013e318238c991. PMID: 22157942

18. Rodríguez González R., Martín Barrasa J.L., Ramos-Nuez Á., Cañas-Pedrosa A.M., Martínez Saavedra M.T., García Bello M.Á., López Aguilar J., Baluja A., Álvarez J., Slutsky A.S., Villar J. Multiple system organ response induced by hyperoxia in a clinically relevant animal model of sepsis. Shock. 2014; 42 (2): 148–153. https://doi.org/ 10.1097/SHK.0000000000000189. PMID: 24978892

19. Stolmeijer R., ter Maaten J.C., Zijlstra J.G., Ligtenberg J.J. Oxygen ther- apy for sepsis patients in the emergency department: a little less? Eur. J. Emerg. Med. 2014; 21 (3): 233–235. https://doi.org/10.1097/ MEJ.0b013e328361c6c7. PMID: 23611817

20. Girardis M., Busani S., Damiani E., Donati A., Rinaldi L., Marudi A., Morelli A., Antonelli M., Singer M. Effect of conservative vs conven- tional oxygen therapy on mortality among patients in an intensive care unit: the Oxygen-ICU randomized clinical trial. JAMA. 2016; 316 (15): 1583–1589. https://doi.org/ 10.1001/jama.2016.11993. PMID: 27706466

21. Manning H.L., Schwartzstein R.M. Pathophysiology of dyspnea. N. Engl. J. Med. 1995; 333 (23): 1547-1553. https://doi.org/10.1056/ NEJM199512073332307. PMID: 7477171

22. Abernethy A.P., McDonald C.F., Frith P.A., Clark K., Herndon J.E.2nd, Marcello J., Young I.H., Bull J., Wilcock A., Booth S., Wheeler J.L., Tulsky J.A., Crockett A.J., Currow D.C. Effect of palliative oxygen versus room air in relief of breathlessness in patients with refractory dyspnea: a double- blind, randomized controlled trial. Lancet. 2010; 376 (9743): 784–793. https://doi.org/10.1016/S0140-6736(10)61115-4. PMID: 20816546

23. Acute Respiratory Distress Syndrome Network, Brower R.G., Matthay M.A., Morris A., Schoenfeld D., Thompson B.T., Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 2000; 342 (18): 1301–1308. https://doi.org/10.1056/ NEJM200005043421801. PMID: 10793162

24. Manja V., Lakshminrusimha S., Cook D.J. Oxygen saturation target range for extremely preterm infants: a systematic review and meta- analysis. JAMA. Pediatr. 2015; 169 (4): 332–340.https://doi.org/ 10.1001/jamapediatrics.2014.3307. PMID: 25664703

25. Panwar R., Hardie M., Bellomo R., Barrot L., Eastwood G.M., Young P.J., Capellier G., Harrigan P.W., Bailey M.; CLOSE Study Investigators; ANZICS Clinical Trials Group. Conservative versus liberal oxygenation targets for mechanically ventilated patients. A pilot multicenter ran- domized controlled trial. Am. J. Respir. Crit. Care Med. 2016; 193 (1): 43–51. 10.1164/rccm.201505-1019OC. PMID: 26334785

26. He H., Long Y., Liu D., Wang X., Zhou X. Clinical classification of tissue perfusion based on the central venous oxygen saturation and the peripheral perfusion index. Crit. Care. 2015; 19: 330. https://doi.org/10.1186/s13054-015-1057-8. PMID: 26369784

27. Martin D.S., Grocott M.P. Oxygen therapy in critical illness: precise control of arterial oxygenation and permissive hypoxemia. Crit. Care Med. 2013; 41 (2): 423–432. https://doi.org/10.1097/CCM.0b013e31826a44f6. PMID: 23263574

28. Tannahill G.M., Curtis A.M., Adamik J., Palsson McDermott E.M., McGettrick A.F., Goel G., Frezza C., Bernard N.J., Kelly B., Foley N.H., Zheng L., Gardet A., Tong Z., Jany S.S., Corr S.C., Haneklaus M., Caffrey B.E., Pierce K., Walmsley S., Beasley F.C., Cummins E., Nizet V., Whyte M., Taylor C.T., Lin H., Masters S.L., Gottlieb E., Kelly V.P., Clish C., Auron P.E., Xavier R.J., O’Neill L.A. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 2013; 496 (7444): 238–242. https://doi.org/10.1038/nature11986. PMID: 23535595

29. Lukyanova L.D. Current issues of adaptation to hypoxia. Signal mech- anisms and their role in system regulation. Patologicheskaya Fiziologiya i Eksperimentalnaya Terapiya. 2011; 1: 3—19. [In Russ.]

30. Krebs H.A., Kornberg H.L., Burnon K. A survey of the energy transfor- mations in living matter. Ergeb. Physiol. 1957; 49: 212–298. https://doi.org/10.1007/BF02269485. PMID: 13609573

31. Singer M. The role of mitochondrial dysfunction in sepsiss-induced multi-organ failure. Virulence. 2014; 5 (1): 66–72. https://doi.org/ 10.4161/viru.26907. PMID: 24185508

32. Chouchani E.T., Pell V.R., Gaude E., Aksentijevic´ D., Sundier S.Y., Robb E.L., Logan A., Nadtochiy S.M., Ord E.N., Smith A.C., Eyassu F., Shirley R., Hu C.H., Dare A.J., James A.M., Rogatti S., Hartley R.C., Eaton S., Costa A.S., Brookes P.S., Davidson S.M., Duchen M.R., Saeb-Parsy K., Shattock M.J., Robinson A.J., Work L.M., Frezza C., Krieg T., Murphy M.P. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014; 515 (7527): 431–435. https://doi.org/10.1038/nature13909. PMID: 25383517

33. Lin A.P., Anderson S.L., Minard K.I., McAlisterr-Henn L. Effects of excess succinate and retrograde control of metabolite accumulation in yeast trii carboxylic cycle mutants. J. Biol. Chem. 2011; 286 (39): 33737–33746. https://doi.org/10.1074/jbc.M111.266890. PMID: 21841001

34. Ehinger J.K., Piel S., Ford R., Karlsson M., Sjövall F., Frostner E.Å., Morota S., Taylor R.W., Turnbull D.M., Cornell C., Moss S.J., Metzsch C., Hansson M.J., Fliri H., Elmér E. Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency. Nat. Commun. 2016; 7: 12317. https://doi.org/ 10.1038/ncomms12317. PMID: 27502960

35. Novitskaya-Usenko L.V., Tsarev A.V. Cardioprotective effect of reamberin in ischemic-reperfusion injury. Obshchaya Reanimatologiya = General Reanimatology. 2016; 12 (4): 49–56. http://dx.doi.org/ 10.15360/1813-9779-2016-4-49-56. [In Russ., In Engl.]

36. Lazarev V.V., Ermolaeva K.R., Kochkin V.S., Tsypin L.E., Popova T.G., Nikolaev D.V., Bologov A.A., Vaganov N.N. Effect of succinate-containing infusion solution on cellular structures in children in the perioperative period. Obshchaya Reanimatologiya = General Reanimatology. 2015; 11 (1): 33–38. http://dx.doi.org/10.15360/1813-9779-2015-1- 33-38. [In Russ., In Engl.]

37. Hill G.B. Hyperbaric oxygen exposures at 3 and 4 atmospheres absolute pressure for experimental gas gangrene: succinate protection against oxygen toxicity. Antimicrob Agents Chemother. 1972; 2 (5): 384–389. 10.1128/AAC.2.5.384. PMID: 4670508


Review

For citations:


Dolgikh V.T., Govorova N.V., Orlov Yu.P., Korpacheva O.V., Dorovskikh G.N., Ershov A.V. Pathophysiological Aspects of Hyperoxia in Anesthesiologist-Reanimatologist's Practice. General Reanimatology. 2017;13(3):83-93. https://doi.org/10.15360/1813-9779-2017-3-83-93

Views: 2595


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)