Functional Activity of the Autonomous Nervous System at Different Levels of Consciousness in Patients with a Brain Damage
https://doi.org/10.15360/1813-9779-2018-2-4-12
Abstract
The purpose of the study — assessment of the level of consciousness in patients with a brain damage on the basis of electrophysiological examination of the functional state of the autonomous nervous system by recording parameters of the heart rate variability (HRV).
Materials and Methods. The study included 77 patients on Day 20—50 after a traumatic brain injury, anoxic injury, consequences of acute cerebral circulation disorders. The following parameters of the HRV for a 5-minute recording were accepted as criteria of norm and pathology of the autonomous nervous system (ANS) activity: (1) parasympathetic hyperactivity (hypervagal state) values with 95% confidence intervals were recorded within the accepted values for (a) SDNN (standard deviation of normal to normal R-R intervals), [41.5 —149.3 ms]; (b) rMSSD (root-mean-square of the successive normal sinus R—R interval difference in ms), [42.4—175.0 ms];(c) pNN50% (percentage of successive normal sinus RR intervals >50 ms), [8.14—54.66%]; (d) SI (Baevsky stress index), [0—80 normalized units, n. u.]; (2) the sympathetic hyperactivity recordered within the range of values for (a) SDNN [4.54—13.30 ms]; (b) rMSSD [2.25— 5.77 ms]; (c) pNN50% [0—0.109%]; (d) SI >900 n. u.; (3) the normal value of ANS parameters were recordered within the range of values for (a) SDNN [13.31—41.4 ms]; (b) rMSSD [5.78—42.3 ms]; (c) pNN50% [0.110—8.1%]; (d) SI [80—900 n. u.]. For verification of the hypervagal state, sympathetic hyperactivity or normal state, at least 3 of 4 parameters should be within the specified limits.
Results. In 40 (51.9%) of 77 patients examined after a brain damage, ANS functional activity parameters were within the range of pathological values. The sympathetic hyperactivity was identified in 34 patients, and in 6 cases the hypervagal state was diagnosed. Pathological parameters of HRV were found in 80% of patients with severe forms of unconsciousness (vegetative state, coma), and only in 20% of patients with normal consciousness.
Conclusion.The computer analysis of the HRV is a necessary element of examination of patients with different levels of consciousness after a brain damage of a traumatic and non-traumatic genesis. The frequency of pathological changes in the functional state of the autonomous nervous system increases significantly in groups of patients from the normal level of consciousness to the state of minimal consciousness, vegetative state, and coma. The sympathetic hyperactivity is the main type of ANS pathology in the groups of patients with minimal consciousness, in the vegetative state, and coma.
About the Authors
Yu. Yu. KiryachkovRussian Federation
25 Petrovka Str., Build. 2, 107031 Moscow
A. V. Grechko
Russian Federation
25 Petrovka Str., Build. 2, 107031 Moscow
D. L. Kolesov
Russian Federation
25 Petrovka Str., Build. 2, 107031 Moscow
A. A. Loginov
Russian Federation
25 Petrovka Str., Build. 2, 107031 Moscow
M. V. Petrova
Russian Federation
25 Petrovka Str., Build. 2, 107031 Moscow;
6 Miklukho-Maсlaya Str., 117198 Moscow
I. V. Pryanikov
Russian Federation
25 Petrovka Str., Build. 2, 107031 Moscow
I. G. Shchelkunova
Russian Federation
25 Petrovka Str., Build. 2, 107031 Moscow
P. Pradkhan
Russian Federation
6 Miklukho-Maсlaya Str., 117198 Moscow
References
1. Sadaka F., Pate D., Lakshmanan R. The FOUR score predicts outcome in patients after traumatic brain injury. Neurocrit. Care. 2012; 16 (1): 95- 101. DOI: 10.1007/s12028-011-9617-5. PMID: 21845490
2. Jalali R., Rezaei M. A comparison of the Glasgow Coma Scale score with full outline of unresponsiveness scale to predict patients’ traumatic brain injury outcomes in intensive care units. Crit. Care Res. Pract. 2014; 2014: 289803. DOI: 10.1155/2014/289803. PMID: 25013727
3. Teasdale G.M., Pettigrew L.E., Wilson J.T., Murray G., Jennett B. Analyzing outcome of treatment of severe head injury: a review and update on advancing the use of the Glasgow Outcome Scale. J. Neurotrauma. 1998; 15 (8): 587-597. DOI: 10.1089/neu.1998.15.587. PMID: 9726258
4. Abou El Fadl M.H., O’Phelan K.H. Management of traumatic brain injury: an update. Neurol. Clin. 2017; 35 (4): 641-653. DOI: 10.1016/j.ncl.2017. 06.003. PMID: 28962805
5. Zafar S.F., Postma E.N., Biswal S., Fleuren L., Boyle E.J., Bechek S., O’Connor K., Shenoy A., Jonnalagadda D., Kim J., Shafi M.S., Patel A.B., Rosenthal E.S., Westover M.B. Electronic health data predict outcomes after aneurysmal subarachnoid hemorrhage. Neurocrit. Care. 2017; Oct 5. [Epub ahead of print]. DOI: 10.1007/s12028-017-0466-8. PMID: 28983801
6. Bartolo M., Bargellesi S., Castioni C.A., Intiso D., Fontana A., Copetti M., Scarponi F., Bonaiuti D.; the Intensive Care and Neurorehabilitation Italian Study Group. Mobilization in early rehabilitation in intencive care unit patients with severe acquired cerebral injury: an observational study. J. Rehabil. Med. 2017; 49 (9): 715-722. DOI: 10.2340/16501977-2269. PMID: 28980699
7. Martinell L., Nielsen N., Herlitz J., Karlsson T., Horn J., Wise M.P., Undén J., Rylander C. Early predictors of poor outcome after out-of-hospital cardiac arrest. Crit. Care. 2017; 21 (1): 96. DOI: 10.1186/s13054-017-1677- 2. PMID: 28410590
8. Majdan M., Brazinova A., Rusnak M., Leitgeb J. Outcome prediction after traumatic brain injury: comparison of the performance of routinely used severity scores and multivariable prognostic models. J. Neurosci. Rural. Pract. 2017; 8 (1): 20-29. DOI: 10.4103/0976-3147.193543. PMID: 28149077
9. Hilz M.J., Aurnhammer F., Flanagan S.R., Intravooth T., Wang R., Hösl K.M., Pauli E., Koehn J. Eyeball pressure stimulation unveils subtle autonomic cardiovascular dysfunction in persons with a history of mild traumatic brain injury. J. Neurotrauma. 2015; 32 (22): 1796-1804. DOI: 10.1089/neu.2014.3842. PMID: 26192266
10. Hoarau X., Richer E., Dehail P., Cuny E. Comparison of long-term outcomes of patients with severe traumatic or hypoxic brain injuries treated with intrathecal baclofen therapy for dysautonomia. Brain Inj. 2012; 26 (12): 1451-1463. DOI: 10.3109/02699052.2012.694564. PMID: 22725634
11. Esterov D., Greenwald B.D. Autonomic dysfunction after mild traumatic brain injury. Brain Sci. 2017; 7 (8): pii: E100. DOI: 10.3390/brainsci7080100. PMID: 28800081
12. Hilz M.J., Wang R., Markus J., Ammon F., Hösl K.M., Flanagan S.R., Winder K., Koehn J. Severity of traumatic brain injury correlates with long-term cardiovascular autonomic dysfunction. J. Neurol. 2017; Aug 2. [Epub ahead of print]. DOI: 10.1007/s00415-017-8581-1. PMID: 28770375
13. Osteraas N.D., Lee V.H. Neurocardiology. Handb. Clin. Neurol. 2017; 140: 49-65. DOI: 10.1016/B978-0-444-63600-3.00004-0. PMID: 28187814
14. Rogobete A.F., Sandesc D., Papurica M., Stoicescu E.R., Popovici S.E., Bratu L.M., Vernic C., Sas A.M., Stan A.T., Bedreag O.H. The influence of metabolic imbalances and oxidative stress on the outcome of critically ill polytrauma patients: a review. Burns Trauma. 2017; 5: 8. DOI: 10.1186/s41038-017- 0073-0. PMID: 28286784
15. Sauaia A., Moore F.A., Moore E.E. Postinjury inflammation and organ dysfunction. Crit. Care Clin. 2017; 33 (1): 167-191. DOI: 10.1016/j.ccc. 2016.08.006. PMID: 27894496
16. Giacino J.T., Ashwal S., Childs N., Cranford R., Jennett B., Katz D.I., Kelly J.P., Rosenberg J.H., Whyte J., Zafonte R.D., Zasler N.D. The minimally conscious state: definition and diagnostic criteria. Neurology. 2002; 58 (3): 349-353. DOI: 10. 1212/ WNL. 58. 3. 349. PMID: 11839831
17. Malik M., Huikuri H., Lombardi F., Schmidt G.; e-Health/Digital Rhythm Study Group of the European Heart Rhythm Association. The purpose of heart rate variability measurements. Clin. Auton. Res. 2017; 27 (3): 139- 140. DOI: 10.1007/s10286-017-0416-8. PMID: 28349277
18. Kiryachkov Yu.Yu., Saltanov A.I., Khmelevsky Ya.M. Computer analysis of heart rate variability. New opportunities for an anesthesiologist and doctors of other specialties. Vestnik Intensivnoi Terapii. 2002; 1: 3-8. [In Russ.]
19. Godbolt A.K., Stenberg M., Jakobsson J., Sorjonen K., Krakau K., Stålnacke B.M., Nygren DeBoussard C.Complications during recovery from severe traumatic brain injury: frequency and associations with outcome. BMJ Open. 2015; 5 (4): e007208. DOI: 10.1136/bmjopen-2014-007208. PMID: 25941181
20. Kupas D.F., Melnychuk E.M., Young A.J. Glasgow Coma Scale motor component («Patient Does Not Follow Commands») performs similarly to total Glasgow Coma Scale in predicting severe injury in trauma patients. Ann. Emerg. Med. 2016; 68 (6): 744.e3-750.e3. DOI: 10.1016/j.annemergmed.2016.06.017. PMID: 27436703
21. Mirow S., Wilson S.H., Weaver L.K., Churchill S., Deru K., Lindblad A.S. Linear analysis of heart rate variability in post-concussive syndrome. Undersea Hyperb. Med. 2016; 43 (5): 531-547. PMID: 28768072
22. Hinson H.E., Schreiber M.A., Laurie A.L., Baguley I.J., Bourdette D., Ling G.S. Early fever as a predictor of paroxysmal sympathetic hyperactivity in traumatic brain jnjury. J. Head Trauma Rehabil. 2017; 32 (5): E50-E54. DOI: 10.1097/HTR.0000000000000271. PMID: 28060200
23. Samuel S., Allison T.A., Lee K., Choi H.A. Pharmacologic management of paroxysmal sympathetic hyperactivity after brain injury. J. Neurosci. Nurs. 2016; 48 (2): 82-89. DOI: 10.1097/JNN.0000000000000207. PMID: 26954919
24. Fernandez-Ortega J.F., Prieto-Palomino M.A., Garcia-Caballero M., Galeas-Lopez J.L., Quesada-Garcia G., Baguley I.J. Paroxysmal sympathetic hyperactivity after traumatic brain injury: clinical and prognostic implications. J. Neurotrauma. 2012; 29 (7): 1364-1370. DOI: 10.1089/neu.2011.2033. PMID: 22150061
25. Toklu H.Z., Sakarya Y, Tümer N. A proteomic evaluation of sympathetic activity biomarkers of the hypothalamus-pituitary-adrenal axis by western blotting technique following experimental traumatic brain injury. Methods Mol. Biol. 2017; 1598: 313-325. DOI: 10.1007/978-1-4939- 6952-41_6. PMID: 28508370
Review
For citations:
Kiryachkov Yu.Yu., Grechko A.V., Kolesov D.L., Loginov A.A., Petrova M.V., Pryanikov I.V., Shchelkunova I.G., Pradkhan P. Functional Activity of the Autonomous Nervous System at Different Levels of Consciousness in Patients with a Brain Damage. General Reanimatology. 2018;14(2):4-12. (In Russ.) https://doi.org/10.15360/1813-9779-2018-2-4-12