Effects of Succinate-Based Antioxidant on in vitro Conversion of Methemoglobin in Oxyhemoglobin
https://doi.org/10.15360/1813-9779-2018-2-46-59
Abstract
The purpose of the study — to determine the feasibility of using the succinate-based antioxidant for the in vitro reduction of excessive methemoglobin to oxyhemoglobin in blood.
Materials and Methods. Blood sampling was performed in five healthy donors in microvettes containing EDTA during prophylactic examinations. NaNO2 solution was added to blood samples in vitro in order to yield methemoglobin (MetHb). The complex drug containing the following active ingredients: succinic acid, inosine, riboflavin, nicotinamide, was used as an antioxidant. The absorption spectrum of red cell suspensions with different drug content Dι (λι )exper was measured with 1 nm increments. The non-linear regression method was used to calculate concentrations of hemoglobin derivatives in suspensions.
Results. In our experiments, when methemoglobin reacted with drug the optical density of peaks typical for oxyhemoglobin increased and the spectral peak of methemoglobin decreased. The greater the concentration of drug, the more was the incubation time, the more efficient was the process of reduction of MetHb to HbO2.
Conclusion. We proved experimentally that while the baseline concentration of MetHb was an average of 91—93%, addition of drug decreased its concentration to 25—7%. Without drug, due to autoreduction, the concentration of MetHb decreases only to 84%. The revealed effect provide a potential for practical applications in critical illness, during the storage of donor blood, in blood transfusions, and under the action of physico-chemical factors on blood.
About the Authors
A. M. ChernyshRussian Federation
25 Petrovka Str., Build. 2, 107031 Moscow;
8 Trubetskaya Str., Build. 2, 119991 Moscow
E. K. Kozlova
Russian Federation
25 Petrovka Str., Build. 2, 107031 Moscow;
8 Trubetskaya Str., Build. 2, 119991 Moscow
V. V. Moroz
Russian Federation
25 Petrovka Str., Build. 2, 107031 Moscow
V. A. Sergunova
Russian Federation
25 Petrovka Str., Build. 2, 107031 Moscow
O. E. Gudkova
Russian Federation
25 Petrovka Str., Build. 2, 107031 Moscow
E. A. Manchenko
Russian Federation
25 Petrovka Str., Build. 2, 107031 Moscow;
8 Trubetskaya Str., Build. 2, 119991 Moscow
A. P. Kozlov
Russian Federation
8 Trubetskaya Str., Build. 2, 119991 Moscow
References
1. Bradberry S.M. Occupational methaemoglobinaemia. Mechanisms of production, features, diagnosis and management including the use of methylene blue. Toxicol. Rev. 2003; 22 (1): 13-27. DOI: 10.2165/00139709-200322010-00003. PMID: 14579544
2. Kohn M.C., Melnick R.L., Ye F., Portier C.J. Pharmacokinetics of sodium nitrite-induced methemoglobinemia in the rat. Drug. Metab. Dispos. 2002; 30 (6): 676–683. DOI: 10.1124/dmd.30.6.676. PMID: 12019195
3. Lee J., El-Abaddi N., Duke A., Cerussi A.E., Brenner M., Tromberg B.J. Noninvasive in vivo monitoring of methemoglobin formation and reduction with broadband diffuse optical spectroscopy. J. Appl. Physiol. 2006; 100 (2): 615–622. DOI: 10.1152/japplphysiol.00424.2004. PMID: 16223982
4. Minami M., Katsumata M., Tomoda A. Methemoglobinemia with oxidized hemoglobins and modified hemoglobins found in bloods of workers handling aromatic compounds and in those of a man who drank cresol solution. Biomed. Biochim. Acta. 1990; 49 (2-3): S327-S333. PMID: 2386523
5. Greenberg M.I. Methylene Blue: fast-acting antidote for methemoglobinemia. Emerg. Med. News. 2001; 23 (9): 26. DOI: 10.1097/01.EEM. 0000292322.94148.37
6. Skold A., Cosco D.L., Klein R. Methemoglobinemia: pathogenesis, diagnosis, and management. South Med. J. 2011; 104 (11): 757–761. DOI: 10.1097/SMJ.0b013e318232139f. PMID: 22024786
7. Kozlova Е., Chernysh А., Moroz V., Sergunova V., Zavialova А., Kuzovlev А. Nanoparticles of perfluorocarbon emulsion contribute to the reduction of methemoglobin to oxyhemoglobin. Int. J. Pharm. 2016; 497 (1): 88-95. DOI: 10.1016/j.ijpharm.2015.11.035. PMID: 26626224
8. CYTOFLAVIN solution for intravenous use. http://eng.polysan.ru/ cytoflavin_amp.htm
9. Tiuriaeva I.I., Kuranova M.L., Gonchar I.V., Rozanov Iu.M. The energycorrective and antioxidative effect of cytoflavin in the postischemical period of human dermal fibroblasts in vitro. Cell Tiss. Biol. 2012; 6 (4): 367–375. DOI: 10.1134/S1990519X1204013X
10. Rumyantseva S.A., Kovalenko A.L., Silina E.V., Stupin V.A., Kabaeva E.N., Chichanovskaya L.V., Nazarov M.V., Tsukurova L.A., Burenichev D.V., Golikov K.V., Sal’nikov M.V., Belova L.A., Mashin V.V., Mazina N.K., Zhilina E.A., Kolotik-Kameneva O.Yu., Sherman M.A. Efficacy of complex antioxidant energy correction of different durations in the treatment of cerebral infarction (results of a multicenter randomized study). Neurosci. Behav. Physi. 2017; 47 (3): 288–295. DOI: 10.1007/s11055-017-0395-1
11. Bellavia L., DuMond J.F., Perlegas A., Bruce King S., Kim-Shapiro D.B. Nitroxyl accelerates the oxidation of oxyhemoglobin by nitrite. Nitric Oxide. 2013; 31: 38–47. DOI: 10.1016/j.niox.2013.03.006. PMID: 23545404
12. Navati M.S., Friedman J.M. Reactivity of glass-embedded met hemoglobin derivatives toward external NO: implications for nitrite-mediated production of bioactive NO. J. Am. Chem. Soc. 2009; 131 (34): 12273– 12279. DOI: 10.1021/ja903364h. PMID: 19663497
13. Jensen F.B. Nitric oxide formation from nitrite in zebrafish. J. Exp. Biol. 2007; 210 (19): 3387–3394. DOI: 10.1242/jeb.008748. PMID: 17872992
14. Wang D., Piknova B., Solomon S.B., Cortes-Puch I., Kern S.J., Sun J., Kanias T., Gladwin M.T., Helms C., Kim-Shapiro D.B., Schechter A.N., Natanson C. In vivo reduction of cell-free methemoglobin to oxyhemoglobin results in vasoconstriction in canines. Transfusion. 2013; 53 (12): 3149–3163. DOI: 10.1111/trf.12162. PMID: 23488474
15. Katsumata M. An industrial toxicological study on workers who synthesize aminophenol and anisidine from chloronitrobenzene. Nihon. Ika. Daigaku Zasshi. 1994; 61 (6): 590–601. DOI: 10.1272/jnms1923.61.590. PMID: 7829653
16. Patel R.P., Hogg N., Kim-Shapiro D.B. The potential role of the red blood cell in nitrite-dependent regulation of blood flow. Cardiovasc. Res. 2011; 89 (3): 507–515. DOI: 10.1093/cvr/cvq323. PMID: 20952416
17. Kozlova E., Chernysh A., Moroz V., Sergunova V., Gudkova O., Kuzovlev A. Nanodefects of membranes cause destruction of packed red blood cells during long-term storage. Exp. Cell Res. 2015; 337 (2): 192–201. DOI: 10.1016/j.yexcr.2015.07.009. PMID: 26169694
18. Kozlova E., Chernysh A., Moroz V., Gudkova O., Sergunova V., Kuzovlev A. Transformation of membrane nanosurface of red blood cells under hemin action. Sci. Rep. 2014; 4: 6033. DOI: 10.1038/srep0603. PMID: 25112597
19. Kozlova E.K., Chernysh A.M., Moroz V.V., Kuzovlev A.N. Analysis of nanostructure of red blood cells membranes by space fourier transform of AFM images. Micron. 2013; 44: 218–227. DOI: 10.1016/j.micron. 2012.06.012. PMID: 22854216
20. Hopmann K.H., Cardey B., Gladwin M.T., Kim-Shapiro D.B., Ghosh A. Hemoglobin as a nitrite anhydrase: modeling methemoglobin-mediated N2O3 formation. Chemistry. 2011; 17 (23): 6348–6358. DOI: 10.1002/chem.201003578. PMID: 21590821
21. Buzunova S.A. Сlinical and pathogenetic approaches in therapy of neuroinfections. Vestnik Novgorodskogo Gosudarstvennogo Universiteta. 2011; 62: 101 – 104.
22. Gudkova A.N., Osinovskaia N.A., Polunina A.G., Gekht A.B. Investigation of the effects of cytoflavin on symptoms of depression and autonomic dysfunction in patients with organic depressive disorder. Zhurnal Nevrologii i Psikhiatrii Imeni S.S. Korsakova. 2013; 113 (12-1): 50-55. PMID: 24430035. [In Russ., In Engl.]
23. Ponomarev E.A., Maskin S.S., Strepetov N.N., Mochailo Yu.A., Pchelintsev K. E. Pharmacological neuroprotection of the brain during carotid artery surgery. Neurosci. Behav. Physi. 2013; 43 (1): 76–78. DOI: 10.1007/ s11055-012-9693-9
24. Kim H.M., Jung H.S., Shin H.Y., Jung K.Y. Inhibition of mast cell-dependent anaphylaxis by succinic acid. Pharmacol. Toxicol. 1999; 84 (4): 154-158. DOI: 10.1111/j.1600-0773.1999.tb00892.x. PMID: 10227065
25. Zarubina I., Lukk M., Shabanov P.Antihypoxic and antioxidant effects of exogenous succinic acid and aminothiol succinate-containing antihypoxants. Byulleten Eksperimentalnoi Biologii i Meditsiny. 2012; 153 (3): 336-339. DOI: 10.1007/s10517-012-1709-5. PMID: 22866305. [In Russ., In Engl.]
26. Ericson D., Thompson J. Arginine-containing compositions and methods for treating red blood cells. Patent № US 8,980,542 B2.
27. Livesey S., Burnett M., Connor J., Wagner C. Composition for cryopreservation comprising nicotinamide, glycerol and red blood cells. Patent № US 8,895,236 B2.
28. Vasilaki A., McMillan D., Kinsella J., Duncan A., O’Reilly D., Talwar D. Relation between riboflavin, flavin mononucleotide and flavin adenine dinucleotide concentrations in plasma and red cells in patients with critical illness. Clin. Chim. Acta. 2010; 411 (21-22): 1750–1755. DOI: 10.1016/j.cca.2010.07.024. PMID: 20667447
29. Orita A., Verde M., Sakai M., Meng Y.A biomimetic redox flow battery based on flavin mononucleotide. Nat. Commun. 2016; 7: 13230. DOI: 10.1038/ncomms13230. PMID: 27767026
Review
For citations:
Chernysh A.M., Kozlova E.K., Moroz V.V., Sergunova V.A., Gudkova O.E., Manchenko E.A., Kozlov A.P. Effects of Succinate-Based Antioxidant on in vitro Conversion of Methemoglobin in Oxyhemoglobin. General Reanimatology. 2018;14(2):46-59. (In Russ.) https://doi.org/10.15360/1813-9779-2018-2-46-59