Preview

General Reanimatology

Advanced search

Neurons Communication in the Hippocampus of Field CA3 of the White Rat Brain after Acute ischemia

https://doi.org/10.15360/1813-9779-2018-5-38-49

Abstract

The aim of this study was to compare the pyramidal neurons, their processes and synapses in the stratum lucidum, stratum radiatum and stratum lacunosum of the molecular layer of the field CA3 of the hippocampus of the brain of white rats in the normal state and after acute ischemia caused by a 20-minute occlusion of the common carotid arteries.

Materials and methods. In the experiment, using histological methods (hematoxylin and eosin, staining by Nissle and immunohistochemistry for p38, MAP-2) and electron microscopy, the pyramidal neurons of field CA3, their processes and synapses in stratum lucidum, stratum radiatum and stratum lacunosum of the molecular layer were studied. The main group included animals in the reperfusion period (1, 3, 7, 14, 21, and 30 days; n=30), comparison group — falsely operated animals (n=20). Morphometric analysis was performed using ImageJ 1.46, the verification of statistical hypotheses — Statistica 8.0.

Results. After occlusion of the common carotid arteries (CCAO) in the field CA3 of hippocampus, reactive, compensatory and reparative reorganization of pyramidal neurons and their communication structures was noted. On day 1, there was a decrease, and then (days 3—14) restoration of the total number of synapses and of P38-positive material within the area of synapses. According to electron microscopy, in the early post-ischemic period, the total numerical density of synaptic contacts in the stratum lacunosum of the molecular layer decreased by 44.8%, and after 14 days recovered to control. In stratum lucidum, the area of P38-positive material decreased by 8.8% after 1 day, and recovered after 3—7 days.

Conclusion. After the CCAO, the communication systems of the pyramid neurons of the field CA3 hippocampus of white rats were reorganized. Neurons of the field CA3 had high tolerance to ischemia and ability to restore interneural relations after reperfusion. In the surviving neurons, high levels of the cytoskeleton (MAP-2) marker and synaptic vesicles (p38) were detected. Data demonstrate structural and functional safety of all components of the communication system of a significant part of pyramidal neurons in acute ischemia. After reperfusion, the most significant alterations included the reconstructed interneuron synapses in the stratum radiatum and the lacunosum molecular layer.

About the Authors

A. S. Stepanov
Omsk State Medical University, Ministry of Health of Russia
Russian Federation

Alexander S. Stepanov

12 Lenin Str., 644099 Omsk




V. A. Akulinin
Omsk State Medical University, Ministry of Health of Russia
Russian Federation

Victor A. Akulinin

12 Lenin Str., 644099 Omsk




S. S. Stepanov
Omsk State Medical University, Ministry of Health of Russia
Russian Federation

Sergey S. Stepanov

12 Lenin Str., 644099 Omsk




D. B. Avdeev
Omsk State Medical University, Ministry of Health of Russia
Russian Federation

Dmitry B. Avdeev

12 Lenin Str., 644099 Omsk




A. V. Gorbunova
Omsk State Medical University, Ministry of Health of Russia
Russian Federation

Anna V. Gorbunova

12 Lenin Str., 644099 Omsk




References

1. Holmes G.L. Epilepsy in the developing brain: lessons from the laboratory and clinic. Epilepsia. 1997; 38 (1): 12–30. DOI: 10.1111/j.15281157.1997.tb01074.x. PMID: 9024181

2. Popov V.I., Medvedev N.I., Rogachevsky V.V., Ignatyev D.A., Styuart M.G., Fesenko E.E. Three-dimensional synapses and astroglia in the hippocampus of rats and ground squirrels: new structural-functional paradigms on the functioning of the synapse. Biofizika. 2003; 48 (2): 289–308. PMID: 12723356. [In Russ.]

3. Grieves R.M., Duvelle É., Wood E.R., Dudchenko P.A. Field repetition and local mapping in the hippocampus and the medial entorhinal cortex. J. Neurophysiol. 2017; 118 (4): 2378-2388. DOI: 10.1152/jn.00933.2016. PMID: 28814638

4. Legéndy C.R. On the ‘data stirring’ role of the dentate gyrus of the hippocampus. Rev. Neurosci. 2017; 28 (6): 599-615. DOI: 10.1515/revneuro2016-0080. PMID: 28593904

5. Moser E.I., Moser M.B., McNaughton B.L. Spatial representation in the hippocampal formation: a history. Nat. Neurosci. 2017; 20 (11): 14481464. DOI: 10.1038/nn.4653. PMID: 29073644

6. Rose C.R., Felix L., Zeug A., Dietrich D., Reiner A., Henneberger C. Astroglial glutamate signaling and uptake in the hippocampus. Front. Mol. Neurosci. 2018; 10: 451. DOI: 10.3389/fnmol.2017.00451. PMID: 29386994

7. Pelkey K.A., Chittajallu R., Craig M.T., Tricoire L., Wester J.C., McBain C.J. Hippocampal GABAergic inhibitory interneurons. Physiol. Rev. 2017; 97 (4): 1619-1747. DOI: 10.1152/physrev.00007.2017. PMID: 28954853

8. Leal G., Bramham C.R., Duarte C.B. BDNF and hippocampal synaptic plasticity. Vitam. Horm. 2017; 104: 153-195. DOI: 10.1016/bs.vh.2016.10.004. PMID: 28215294

9. Arushanyan E.B., Beier E.V. Hyppocampus and cognitive disturbances. Zhurnal Nevrologii i Psikhiatrii Imeni S.S.Korsakova. 2007; 107 (7): 72– 77. [In Russ.]

10. Raven F., Van der Zee E.A., Meerlo P., Havekes R. The role of sleep in regulating structural plasticity and synaptic strength: implications for memory and cognitive function. Sleep Med. Rev. 2018; 39: 3-11. DOI: 10.1016/j.smrv.2017.05.002. PMID: 28641933

11. Semchenko V.V., Stepanov S.S., Bogolepov N.N. Synaptic plasticity of the brain (fundamental and applied aspects). Moscow; Direkt-Media; 2014: 499. ISBN 978-5-87367-132-8. [In Russ.]

12. Stepanov A.S. Comparative characteristics of the white rats neocortex, hippocampus and amygdale complex synaptoarchitectonics in norm and after acute ischemia. Zhurnal Anatomii i Gistopatologii. 2017; 6 (4): 47–54. [In Russ.]

13. Hossmann K.A. Cerebral ischemia: models, methods and outcomes. Neuropharmacology. 2008; 55 (3): 257-270. DOI: 10.1016/j.neuropharm.2007.12.004. PMID: 18222496

14. Paxinos G., Watson C. The rat brain in stereotaxic corodinates. 6-th ed. San Diego (California): Elsevier Academic Press; 2007: 456. ISBN 9780080475158

15. Stepanov A.S., Akulinin V.A., Stepanov S.S., Mytsik A.V. Immunohistochemical characterization of the neurons communication structures in the human brain cortex in normal conditions and after reperfusion. Zhurnal Anatomii i Gistopatologii. 2016; 5 (4): 61–68. [In Russ.]

16. Stepanov A.S., Akulinin V.A., Stepanov S.S., Avdeyev D.B. Methodological peculiarities of the morphometric characterization of human neocortex synoptoarchitectonics based on immunofluorescent demonstration of neuromodulin. Morfologiya. 2018; 153 (1): 65–70. [In Russ.]

17. Borovikov V.P. Statistica. The art of machine data-analysis. 2nd ed. Sankt Peterburg: Piter; 2003: 688. ISBN 5-272-00078-1. [In Russ.]

18. Baron J.C., Yamauchi H., Fujioka M., Endres M. Selective neuronal loss in ischemic stroke and cerebrovascular disease. J. Cereb. Blood Flow Metab. 2014; 34 (1): 2-18. DOI: 10.1038/jcbfm.2013.188. PMID: 24192635

19. Maurer L.L., Philbert M.A. The mechanisms of neurotoxicity and the selective vulnerability of nervous system sites. Handb. Clin. Neurol. 2015; 131: 61-70. DOI: 10.1016/B978-0-444-62627-1.00005-6. PMID: 26563783


Review

For citations:


Stepanov A.S., Akulinin V.A., Stepanov S.S., Avdeev D.B., Gorbunova A.V. Neurons Communication in the Hippocampus of Field CA3 of the White Rat Brain after Acute ischemia. General Reanimatology. 2018;14(5):38-49. https://doi.org/10.15360/1813-9779-2018-5-38-49

Views: 1350


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)