Influence of Noninvasive Respiratory Support Techniques on Gas Exchange in Cardiac Surgical Patients Suffering from Post-Operative Respiratory Failure
https://doi.org/10.15360/1813-9779-2019-1-21-31
Abstract
Respiratory failure (RF) after tracheal extubation occurs in 5–25% of cardiac surgical patients. Various noninvasive respiratory support techniques are available for RF treatment.
The purpose of the study is a comparative assessment of the effect on gas exchange of oxygen inhalation through a mask with noninvasive airway positive pressure mask ventilation, and high-flow lung ventilation during post-extubation respiratory failure in cardiac surgical patients.
Materials and methods. 52 cardiac surgical patients with post-extubation respiratory failure (mean age 61 (55–67) years) were included in the study. Respiratory failure critera were as follows: PaO2/FiO2 _ 300 mm Hg or SpO2 _ 88% during room air breathing. Exclusion criteria included presentation of pleural effusion in patients, pneumothorax, diaphragm paresis. Every patient was subjected consecutively to arterial blood gases test during room air breathing, low-flow oxygen therapy using a mask with a pre-volume bag, high-flow ventilation (HFNC), and noninvasive positive pressure mask ventilation (NIPPV). Each method was applied during 1 hour prior to the test. Respiratory rate (RR) and capillary blood saturation (SpO2) were monitored throughout the whole study.
Results. PaO2/FiO2 during low-flow oxygen therapy was equal to 171 (137–243) mm Hg. At the background of HFNC, this index increased to 235 (183–305) mm Hg (P=0.00004), and upon transfer to NIPPV — to 228 (180–288) mm Hg (P=0.000028). SpO2 during HFNC and NIPPV increased from 95 (93–98)% to 98 (96–99)% (P=0.000006) and 97 (95–98)%, respectively (P=0.000006 and P=0.000069). PaCO2 was higher during oxygen mask breathing compared to air breathing: 41 (37–44) mm Hg and 38 (34–42) mm Hg, correspondingly, P=0.0017. Upon transfer to HFNC, PaCO2 lowered on average by 10% (37 (33–39) mm Hg, P=0.0000001), to NIPPV — by 7% (38 (36–42) mm Hg, P=0,0015). Differences were also significant when compred RR during oxygen mask breathing (20 (16–24) respirations/minute) vs. HFNC (16 (12–20) respirations/minute, P=0.0) and vs. NIPPV (18 (16–20) respirations/minute, P=0.018). Comparison of HFNC vs. NIPPV revealed reliable difference in RR (16 (12–20) respirations/minute against 18 (16-20) respirations/minute, P=0.016), PaCO2 (37 (33–39) mm Hg against 38 (36–42) mm Hg, P=0.0034), and SpO2 (98 (96–99)% against 97 (95–98)%, P=0.022).
Conclusion. HFNC and NIPPV exert a similar positive effect on the oxygenating function of lungs and gas exchange in cardiac surgical patients with post-extubation respiratory failure. Compared to NIPPV, high-flow ventilation renders most significant positive effect on elimination of CO2, RR and SpO2, and is better tolerated by patients.
About the Authors
A. A. EremenkoRussian Federation
Alexander A. Eremenko
2 Abrikosov lane, 119435 Moscow,
19 Bolshaya Pirogovskaya Str., Bldg. 1, 119146 Moscow
Р. V. Polyakova
Russian Federation
Polina V. Polyakova
2 Abrikosov lane, 119435 Moscow
M. A. Vyzhigina
Russian Federation
Margarita A. Vyzhigina
2 Abrikosov lane, 119435 Moscow,
19 Bolshaya Pirogovskaya Str., Bldg. 1, 119146 Moscow
References
1. Azoulay E., Thiery G., Chevret S., Moreau D., Darmon M., Bergeron A., Yang K., Meignin V., Ciroldi M., Le Gall J.R., Tazi A., Schlemmer B. The prognosis of acute respiratory failure in critically ill cancer patients. Medicine (Baltimore). 2004; 83 (6): 360–370. DOI: 10.1097/01.md.0000145370.63676.fb. PMID: 15525848
2. Linko R., Okkonen M., Pettila V., Perttila J., Parviainen I., Ruokonen E., Tenhunen J., Ala-Kokko T., Varpula T.; FINNALI-study group. Acute respiratory failure in intensive care units. FINNALI: a prospective cohort study. Intensive Care Med. 2009; 35 (8): 1352–1361. DOI: 10.1007/s00134-009-1519-z. PMID: 19526218
3. Duan J., Han X., Bai L., Zhou L., Huang S. Assessment of heart rate, acidosis, consciousness, oxygenation, and respiratory rate to predict noninvasive ventilation failure in hypoxemic patients. Intensive Care Med. 2017; 43: 192–199 DOI 10.1007/s00134-016-4601-3. PMID: 27812731
4. Yamagishi, T., Ishikawa S., Ohtaki A., Takahashi T., Koyano T., Ohki S., Sakata S., Murakami J., Hasegawa Y., Morishita Y. Postoperative oxygenation following coronary artery bypass grafting. A multivariate analysis of perioperative factors. J Cardiovasc. Surg. (Torino). 2000 Apr; 41 (2): 221–225. PMID: 10901525
5. Filsoufi F1, Rahmanian PB, Castillo JG, Chikwe J, Adams DH. Logistic risk model predicting postoperative respiratory failure in patients undergoing valve surgery. Eur J Cardiothorac Surg. 2008; 34 (5): 953–959. DOI: 10.1016/j.ejcts.2008.07.061. PMID: 18835184
6. Dabbagh A., Esmailian F., Aranki S. (eds.). Postoperative Critical Care for Adult Cardiac Surgical Patients. Second Edition. Springer International Publishing AG, part of Springer Nature 2018: 334–337. ISBN: 978-3-319-75746-9. DOI: 10.1007/978-3-319-75747-6
7. Papazian L., Corley A., Hess D., Fraser J.F., Frat J.P., Guitton C., Jaber S., Maggiore S.M., Nava S., Rello J., Ricard J.D., Stephan F., Trisolini R., Azoulay E. Use of high-flow nasal cannula oxygenation in ICU adults: a narrative review. Intensive Care Med. 2016; 42 (9): 1336–1349. DOI: 10.1007/s00134-016-4277-8. PMID: 26969671
8. Curley G.F., Laffy J.G., Zhang H., Slutsky A.S. Noninvasive respiratory support for acute respiratory failure-high flow nasal cannula oxygen or non-invasive ventilation? J Thorac Dis. 2015; 7 (7): 1092–1097. DOI: 10.3978/j.issn.2072-1439.2015.07.18. PMID: 26380720
9. Ozsancak Ugurlu A., Sidhom S.S., Khodabandeh A., Ieong M., Mohr C., Lin D.Y., Buchwald I., Bahhady I., Wengryn J., Maheshwari V., Hill N.S. Use and outcomes of noninvasive positive pressure ventilation in acute care hospitals in Massachusetts. Chest. 2014; 145 (5): 964–971. DOI: 10.1378/chest.13-1707. PMID: 24480997
10. Avdeev S.N. Non-invasive ventilation in patients hospitalized with COPD. Bulletin of Siberian medicine. Byulleten sibirskoj mediciny. 2017; 16 (2): 6–19. [In Russ.] DOI 10.20538/1682-0363-2017-2-6-19
11. Zhu G.F., Wang D.J., Liu S., Jia M., Jia S.J. Efficacy and safety of noninvasive positive pressure ventilation in the treatment of acute respi ratory failure after cardiac surgery. Chin Med J (Engl). 2013; 126 (23): 4463–4469. DOI: 10.3760/cma.j.issn.0366-6999.20131704 PMID: 24286408
12. Stephan F., Barrucand B., Petit P., Rezaiguia-Delclaux S., Medard A., Delannoy B., Cosserant B., Flicoteaux G., Imbert A., Pilorge C., Berard L.; BiPOP Study Group. High-flow nasal cannula oxygen vs noninvasive positive airway pressure in hypoxemic patients after cardiothoracic surgery: A randomized clinical trial. JAMA. 2015; 313: 2331–2339. DOI: 10.1001/jama.2015.5213. PMID: 25980660
13. Sreenan C., Lemke R.P., Hudson-Mason A., Osiovich H. High-flow nasal cannulae in the management of apnea of prematurity: a comparison with conventional nasal continuous positive airway pressure. Pediatrics. 2001 May; 107 (5):1081–1083. DOI: 10.1542/peds.107.5.1081. PMID: 11331690
14. Roca O., Hernandez G., Diaz-Lobato S., Carratala J.M., Gutierrez R.M., Masclans J.R., Spanish Multidisciplinary Group of High Flow Supportive Therapy in Adults (HiSpaFlow). Current evidence for the effectiveness of heated and humidified high flow nasal cannula supportive therapy in adult patients with respiratory failure. Crit Care. 2016; 20 (1): 109. DOI: 10.1186/s13054-016-1263-z. PMID: 27121707
15. Nishimura M. High-flow nasal cannula oxygen therapy in adults. J Intensive Care. 2015; 3 (1): 15. DOI: 10.1186/s40560-015-0084-5. PMID: 25866645
16. Riera J., Perez P., Cortes J., Roca O., Masclans J.R., Rello J. Effect of highflow nasal cannula and body position on end-expiratory lung volume: a cohort study using electrical impedance tomography. Respir Care. 2013; 58: 589–596. DOI: 10.4187/respcare.02086. PMID: 23050520
17. Chanques G., Contantin J.M., Sauter M., Jung B., Sebbane M., Verzilli D. Discomfort associated with underhumidified high-flow oxygen therapy in critically ill patients. Intensive Care Med. 2009; 35 (6): 996– 1003. DOI: 10.1007/s00134-009-1456-x. PMID: 19294365
18. Maggiore S.M., Idone F.A., Vaschetto R., Festa R., Cataldo A., Antonicelli F., Montini L., De Gaetano A., Navalesi P., Antonelli M. Nasal high-flow oxygen versus Venturi mask oxygen therapy after extubation. Effects on oxygenation, comfort and clinical outcome. Am J Respir Crit Care Med. 2014; 190: 282–288. DOI: 10.1164/rccm.201402-0364OC. PMID: 25003980
19. Lee J.H., Rehder K.J., Williford L., Cheifetz I.M., Turner D.A. Use of high flow nasal cannula in critically ill infants, children, and adults: a critical review of the literature. Intensive Care Med. 2013; 39 (2): 247–257. DOI: 10.1007/s00134-012-2743-5. PMID: 23143331
20. Hernandez G., Vaquero C., Gonzalez P., Subira C., Frutos-Vivar F., Rialp G., Laborda C., Colinas L.,Cuena R., Fernandez R. Effect of Postextubation high-flow nasal cannula vs conventional oxygen therapy on reintubation in low-risk patients a randomized clinical trial. JAMA. 2016; 315 (13): 1354–1361. DOI: 10.1001/jama.2016.2711. PMID: 26975498
21. Parke R., McGuinness S., Dixon R., Jull A. Open-label, phase II study of routine high-flow nasal oxygen therapy in cardiac surgical patients. Br J Anaesth. 2013; 111 (6): 925–931. DOI: 10.1093/bja/aet262. PMID: 23921199
22. Tiruvoipati R., Lewis D., Haji K., Botha J. High-flow nasal oxygen vs high-flow face mask: a randomized crossover trial in extubated patients. J. Crit. Care. 2010; 25: 463–468. DOI: 10.1016/j.jcrc.2009.06.050. PMID: 19781896
23. Schwabbauer N., Berg B., Blumenstock G., Haap M., Hetzel J., Riessen R. Nasal high-flow oxygen therapy in patients with hypoxic respiratory failure: effect on functional and subjective respiratory parameters compared to conventional oxygen therapy and non-invasive ventilation (NIV). BMC Anesthesiol. 2014; 14: 66. DOI: 10.1186/14712253-14-66. PMID: 25110463
24. Frat J.P., Thille A.W., Mercat A., Girault C., Ragot S., Perbet S., Prat G., Boulain T., Morawiec E., Cottereau A., Devaquet J., Nseir S., Razazi K., Mira J.P., Argaud L., Chakarian J.C., Ricard J.D., Wittebole X., Chevalier S., Herbland A., Fartoukh M., Constantin J.M., Tonnelier J.M., Pierrot M., Mathonnet A., Beduneau G., Deletage-Metreau C., Richard J.C., Brochard L., Robert R.; FLORALI Study Group; REVA Network. Highflow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015; 372 (23): 2185–2196. DOI: 10.1056/NEJMoa1503326. PMID: 25981908
25. McGinley B.M., Patil S.P., Kirkness J.P., Smith P.L., Schwartz A.R., Schneider H. A nasal cannula can be used to treat obstructive sleep apnea. Am J Respir Crit Care Med. 2007; 15; 176 (2): 194–200. DOI: 10.1164/rccm.200609-1336OC. PMID: 17363769
26. Sztrymf B., Messika J., Bertrand F., Hurel D., Leon R., Dreyfuss D., Ricard J.D. Beneficial effects of humidified high flow nasal oxygen in critical care patients: a prospective pilot study. Intensive Care Med. 2011; 37: 1780–1786. DOI: 10.1007/s00134-011-2354-6. PMID: 21946925
27. Messika J., Ben Ahmed K., Gaudry S., Miguel-Montanes R., Rafat C., Sztrymf B., Dreyfuss D., Ricard J.D. Use of high-flow nasal cannula oxygen therapy in subjects with ARDS: A 1-year observational study. Respir Care 2015; 60: 162–169 DOI: 10.4187/respcare.03423 PMID: 25371400
Review
For citations:
Eremenko A.A., Polyakova Р.V., Vyzhigina M.A. Influence of Noninvasive Respiratory Support Techniques on Gas Exchange in Cardiac Surgical Patients Suffering from Post-Operative Respiratory Failure. General Reanimatology. 2019;15(4):21-31. https://doi.org/10.15360/1813-9779-2019-1-21-31