Homogeneous Deformation of Native Erythrocytes During Long-Term Storage
https://doi.org/10.15360/1813-9779-2019-5-4-10
Abstract
Purpose of the study — to evaluate biomechanical regularities of deep deformation of native erythrocytes’ membranes during long-term (up to 32 days) storage of erythrocyte suspension.
Materials and methods. The method for addressing the said problem was atomic-force spectroscopy. The measured value was hHz comprizing the depth to which the probe immersion process was described by interaction with a homogeneous medium. Empirical and theoretical dependence of the interaction force F (nN) on the probe immersion depth h (nm) — F (h) were obtained. Bar charts of relative frequency density of Young’s modulus E were built.
Results. Modulus E changed from 9.3±3.2 kPa — for 3 days of storage, to 22.7±8.7 kPa — for 32 days. Coefficients of skewness were 0.52±0.04 (for day 3) and 0.82±0.09 (for day 32 d), hHz value remaining constant.
Conclusion. Progressively as erythrocyte suspension was stored, erythrocyte membranes to the depth of 700 nm deflected homogeneously in spite of 2.4-fold increase of Young’s modulus.
About the Authors
E. A. ManchenkoRussian Federation
25 Petrovka Str., Bldg. 2, 107031 Moscow, Russia
8 Trubetskaya Str., Bldg. 2, 119991 Moscow, Russia
E. K. Kozlova
Russian Federation
25 Petrovka Str., Bldg. 2, 107031 Moscow, Russia
8 Trubetskaya Str., Bldg. 2, 119991 Moscow, Russia
V. A. Sergunova
Russian Federation
25 Petrovka Str., Bldg. 2, 107031 Moscow, Russia
A. M. Chernysh
Russian Federation
25 Petrovka Str., Bldg. 2, 107031 Moscow, Russia
8 Trubetskaya Str., Bldg. 2, 119991 Moscow, Russia
References
1. D’Almeida M. S., Jagger J., Duggan M., White M., Ellis C., Chin‐Yee I. H. A comparison of biochemical and functional alterations of rat and human erythrocytes stored in CPDA‐1 for 29 days: implications for animal models of transfusion. Transfus. Med. 2000; 10 (4): 291–303. DOI: 10.1046/j.1365-3148.2000.00267.x. PMID: 11123813
2. Wang C.H., Popel A.S. Effect of red blood cell shape on oxygen transport in capillaries. Math. Biosci. 1993; 116 (1): 89-110. PMID: 8343620
3. Tomaiuolo G. Biomechanical properties of red blood cells in health and disease towards microfluidics. Biomicrofluidics. 2014; 8 (5): 051501. DOI: 10.1063/1.4895755. eCollection 2014 Sep. PMID: 25332724
4. Chien S. Red cell deformability and its relevance to blood flow. Annu. Rev. Physiol. 1987; 49: 177–192. DOI: 10.1146/annurev.ph.49. 030187.001141. PMID: 3551796
5. Frank S. M., Abazyan B., Ono M., Hogue C. W., Cohen D. B., Berkowitz D. E., Barodka V.M. Decreased erythrocyte deformability after transfusion and the effects of erythrocyte storage duration. Anesth. Analg. 2013; 116 (5): 975–981. DOI: 10.1213/ANE.0b013e31828843e6. PMID: 23449853
6. Kozlova E., Chernysh A., Moroz V., Sergunova V., Gudkova O., Manchenko E. Morphology, membrane nanostructure and stiffness for quality assessment of packed red blood cells. Sci. Rep. 2017; 7 (7): 1–11. DOI: 10.1038/s41598-017-08255-9. PMID: 28798476
7. Kozlova E., Chernysh A., Manchenko E., Sergunova V., Moroz V. Nonlinear biomechanical characteristics of deep deformation of native RBC membranes in normal state and under modifier action. Scanning. 2018; Article ID 1810585. DOI: 10.1155/2018/1810585
8. Lekka M., Fornal M., Pyka-Fościak G., Lebed K., Wizner B., Grodzicki T., Styczeń J. Erythrocyte stiffness probed using atomic force microscope. Biorheology. 2005; 42 (4): 307–317. PMID: 16227658
9. Kuznetsova T.G., Starodubtseva M.N., Yegorenkov N.I., Chizhik S.A., Zhdanov R.I. Atomic force microscopy probing of cell elasticity. Micron. 2007; 38 (8): 824–833. DOI: 10.1016/j.micron.2007.06.011.PMID: 17709250
10. Sergunova V.A., Kozlova E.K., Myagkova E.A., Chernysh A.M. In vitro measurement of the elastic properties of the native red blood cell membrane. Obschaya reanimatologiya=General Reanimatology. 2015; 11 (3): 39–44. [In Russ.] DOI: 10.15360/1813-9779-2015-3-39-44
11. Sergunova V.A., Gudkova O.E., Kozlov A.P., Chernysh A.M. Measurement of the local tension of red blood cell membranes by atomic force spectroscopy. Obschaya reanimatologiya=General Reanimatology. 2013; 9 (1): 14. [In Russ.] DOI: 10.15360/1813-9779-2013-1-14
12. Xu Z., Zheng Y., Wang X., Shehata N., Wang C., Sun Y. Stiffness increase of red blood cells during storage. Microsyst. Nanoeng. 2018; 4: 17103. DOI: 10.1038/micronano.2017.103
13. Park H., Lee S., Ji M., Kim K., Son Y., Jang S., Park Y. Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging. Sci. Rep. 2016; 6: 34257. DOI: 10.1038/srep34257. PMID: 27698484
14. Girasole M., Cricenti A., Generosi R., Congiu-Castellano A., Boumis G., Amiconi G. Artificially induced unusual shape of erythrocytes: an atomic force microscopy study. J Microsc. 2001; 204: 46–52. DOI: 10.1046/j.1365-2818.2001.00937.x. PMID: 11580812
15. World Health Organization. Dept. of Blood Safety and Clinical Technology, Safe blood and blood product. Manual on the management, maintenance and use of blood cold chain equipment. Geneva: World Health Organization. 2005.
16. Zhang W., Liu F. Effect of polylysine on blood clotting, and red blood cell morphology, aggregation and hemolysis. J. Nanosci. Nanotechnol. 2014; 17 (1): 251–255. PMID: 29620337
17. Fornal M., Lekka M., Pyka-Fościak G., Lebed K., Grodzicki T., Wizner B., Styczeń J. Erythrocyte stiffness in diabetes mellitus studied with atomic force microscope. Clin. Hemorheol. Microcirc. 2015; 35 (1–2): 273–276. PMID: 16899942
18. Chernysh A.M., Kozlova E.K., Moroz V.V., Sergunova V.A., Gudkova O.E., Kozlov A.P., Manchenko E.A. Nonlinear local deformations of erythrocyte membranes: normal erythrocytes (part 1). Obschaya reanimatologiya=General Reanimatology.. 2017; 13 (5): 58–68. (In Russ.) DOI: 10.15360/1813-9779-2017-5-58-68
19. Thomas G., Burnham N.A., Camesano T.A., Wen Q. Measuring the mechanical properties of living cells using atomic force microscopy. J. Vis. Exp. 2013; (76). DOI: 10.3791/50497. PMID: 23851674
20. Lien C. C., Wu M. C., Ay C. Study on the Young’s modulus of red blood cells using atomic force microscope. Applied Mechanics and Materials. 2014; 627: 197–201. DOI: 10.4028/www.scientific.net/AMM.627.197
21. Hertz H. Ueber den kontakt elastischer koerper. Journal für die Reine und Angewandte Mathematik. 1881; 92 (4): 245–260.
Review
For citations:
Manchenko E.A., Kozlova E.K., Sergunova V.A., Chernysh A.M. Homogeneous Deformation of Native Erythrocytes During Long-Term Storage. General Reanimatology. 2019;15(5):4-10. https://doi.org/10.15360/1813-9779-2019-5-4-10