Preview

General Reanimatology

Advanced search

Molecular Markers of Ischemic Stroke

https://doi.org/10.15360/1813-9779-2019-5-11-22

Abstract

The purpose of the study was to evaluate the clinical significance of CNS biological markers in an ischemic stroke.
Materials and methods. Blood serum biomarkers of CNS were assayed by ELISA in patients suffering from cerebrovascular disorders of ischemic origin. Neuron-specific enolase, brain-derived neutrophic factor (BDNF), glial-derived neutrophic factor (GDNF), protein S-100 total (ɑβ–ββ), sialyl carbohydrate antigen (KL-6), vascular endothelial growth factor, and superoxide dismutase were analyzed. All tests were carried out using automatic microplate immunoassay analyzer Immunomat TM. The study included 43 patients of 50 to 80 years of age, suffering from cerebrovascular disorders; among them there were 24 women and 19 men. Blood serum biomarkers of CNS were assayed within the first 3–6 hours, and on week 2, 3, and 4 from onset of the disease. The control group consisted of 20 volunteers (apparently healthy donors). Statistical analysis was carried out using non-parametrical Mann–Whitney test. Results were considered as significant at P 0.05.
Results. During the pre-necrotic and early necrotic period, higher neuron-specific enolase, protein S-100, superoxide dismutase, and lower brain-derived neutrophic factor and glial-derived neutrophic factor were observed, reflecting structural brain alterations due to disturbed circulation. At later follow-up time-points, BDNF, GDNF, VEGF, and KL-6 increased evidencing activated CNS regeneration processes.
Conclusion. The content of biological markers in blood serum of ischemic stroke patients reflects the disease stages, which helps managing the CNS regeneration processes.

About the Authors

A. M. Golubev
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Peoples’ Friendship University of Russia
Russian Federation

25 Petrovka Str., Bldg. 2, 107031 Moscow, Russia

6 Miklukho-Maсlaya Str., 117198 Moscow, Russia



M. V. Petrova
Peoples’ Friendship University of Russia, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

6 Miklukho-Maсlaya Str., 117198 Moscow, Russia

777 Lytkino 141534, Solnechnogorsk district, Moscow region, Russia



A. V. Grechko
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation
777 Lytkino 141534, Solnechnogorsk district, Moscow region, Russia


V. E. Zakharchenko
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology,
Russian Federation
777 Lytkino 141534, Solnechnogorsk district, Moscow region, Russia


A. N. Kuzovlev
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, A. I. Evdokimov Moscow State University of medicine and dentistry, Ministry of Health of Russia
Russian Federation

25 Petrovka Str., Bldg. 2, 107031 Moscow, Russia

20 Delegatskaya Str., Build 1, 127473 Moscow, Russia



A. V. Ershov
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, I. M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
Russian Federation

25 Petrovka Str., Bldg. 2, 107031 Moscow, Russia

8 Trubetskaya Str., Bldg. 2, 119991 Moscow, Russia



References

1. Sonderer J., Katan Kahles M. Aetiological blood biomarkers of ischemic stroke. Swiss Med. Wkly. 2015; 145: w14138. PMID: 26024210. DOI: 10.4414/smv.2015.14138.

2. Monbailliu T., Goossens J., Hachimi-Idrissi S. Blood protein biomarkers tool for ischemic stroke: a systematic review. Biomark. Med. 2017; 11 (6): 503–512. DOI: 10.2217/bmm-2016-0232.

3. Misra S., Kumar A., Kumar P., Yadav A.K., Mohania D., Pandit A.K., Prasad K., Vibha D. Blood-based protein biomarkers for stroke differentiation: A systematic review/ Proteomics Clin. Appl. 2017; 11 (9-10). DOI: 10.1002/prca.201700007.

4. Ng G.J.L., Quek A.M.L., Cheung C., Arumugam T.V., Seet R.C.S. Stroke biomarkers in clinical practice: A critical appraisal. Neurochem Int. 2017; 107: 11–22. DOI: 10.1016/j.neuint.2017.01.005.

5. Stanca D.M., Marginean I.C., Soritau O., Muresanu D.F. Plasmatic markers for early diagnostic and treatment decisions in ischemic stroke. J. Med. Life. 2015; 8: 21–25. PMID: 26366222. PMCID: PMC4564040.

6. Lu G., He Q., Shen Y., Cao F. Potential biomarkers for predicting hemorrhagic transformation of ischemic stroke. Int. J. Neurosci. 2018; 128 (1): 79–89. DOI: 10.1080/00207454.2017.1349766.

7. Golubev A.M., Kuzovlev A.N., Antonova V.V., Zakharchenko V.E., Petrova M.V., Grechko A.V. Molecular Biomarkers for Prediction of Neurological Outcome after Sudden Circulatory Arrest (Review). Obschaya reanimatilogiya = General Reanimatology. 2018; 14 (3): 68–81. [In Russ.] https://doi.org/10.15360/1813-9779-2018-3-68-81

8. Jolana L., Kamil D. The Role microRNA in ischemic and Hemorrhagic Stroke. Curr. Drug Deliv. 2017; 14 (6): 816–831. DOI: 10.2174/1567201813666160919142212.

9. Chen W., Sinha B., Benowitz L., Chen Q., Zhang Z., Patel N.J., Aziz-Sultan A.M., Chiocca A.E., Wang X. Monogenic, Polygenic R.N.A., Micro R.N.A. Markers for Ischemic stroke. Mol. Neurobiol. 2019; 56 (2): 1330–1343. DOI: 10.1007/s12035-018-1055-3.

10. Branco J.P., Costa J.S., Sargento-Freitas J., Oliveira S., Mendes B., Lains J., Pinheiro J. Neuroimaging and Blood Biomarkers in Functional Prognosis after Stroke. Acta Med. Port. 2016; 29 (11): 749–754. DOI: 10.20344/amp.7411.

11. Makris K., Haliassos A., Chondrogianni M., Tsivgoulis G. Blood biomarkers in ischemic stroke: potential role and challenges in clinical practice and research. Crit. Rev. Clin. Lab. Sci. 2018; 55 (5): 294–328. DOI: 10.1080/10408363.2018.1461190.

12. Zaheer S., Beg M., Rizvi I., Islam N., Ullah E., Akhtar N. Correlation between serum neuron specific enolase and functional neurological outcome in patients of acute ischemic stroke. Ann. Indian Acad. Neurol. 2013; 16 (4): 504–508. DOI: 10.4103/0972-2327.120442.

13. Kim B.J., Kim Y.J., Ahn S.H., Kim N.Y., Kang D.W., Kim J.S., Kwon S.U. The second elevation of neuron-specific enolase peak after ischemic stroke is associated with hemorrhagic transformation. J. Stroke Cerebrovasc. Dis. 2014; 23 (9): 2437–2443. DOI: 10.1016/j.jstrokectrebrovasdis.2014.05.020.

14. Lu K., Xu X., Cui S., Wang F., Zhang B., Zhao Y. Serum neuron specific enolase level as a predictor of prognosis in acute ischemic stroke patients after intravenous thrombolysis. J. Neurol. Sci. 2015; 359 (1–2): 202–206. DOI: 10.1016/j.jns.2015.10.034.

15. Isgro M.A., Bottoni P., Scatena R. Neuron-Specific Enolase as a Biomarker: Biochemical and Clinical Aspects. Adv. Exp. Med. Biol. 2015; 867: 125–143. DOI: 10.1007/978-94-017-7215-0_9.

16. Gonzalez-Quevedo A., Gonsalez-Garcia S., Hernandez-Diaz Z., Fernandez Concepcion O., Fernandez-Flvirall I., Menendez-Sainz MC., Fernandez-Carriera R. Serum neuron specific enolase could predict subclinical brain damage and the subsequent occurence of brain related vascular events during follow up in essential hypertension. J. Nturol. Sci. 2016; 363: 158–163. DOI: 10.1016/j.jns.2016.02.052.

17. Haupt W.F., Chopan G., Sobesky J., Liu W.C., Dohmen C. Prognostic value of somatostnsory evoked potentials, neuron-specific enolase? And S100 for short-term outcome in ischemic stroke. J.Neurophysiol. 2016; 115 (3): 1273–1278. DOI: 10.1152/jn.01012.2015.

18. Ostrova I.V., Avrushchenko M.S., Golubev A.M., Golubeva N.V. The Contribution of Brain-Derived Neurotrophic Factor (BDNF) and its TrkB Receptor to Hippocampal Neuron Resistance to Ischemia-Reperfusion (Experimental Study). Obshaya Reanimatologiya=General Reanimatology. 2018; 14 (6): 41–50. [In Russ.] DOI: 10.15360/1813-9779-2018-6-41-50

19. Qiao H.J., Li Z.Z., Wang L.M., Sun W., Yu J.C., Wang B. Association of lower serum Brain-derived neurotrophic factor levels with larger infarct volumes in acute ischemic stroke. J. Neuroimmunol. 2017; 307: 69–73. DOI: 10.1016/j.jneuroim.2017.04.002.

20. Casas S., Perez A.F., Mattiazzi M., Lopez J., Folgueira A., Gargiulo-Monachelli G.M. Potential Biomarkers with Plasma Cortisol, Brainderived Neurotrophic Factor and Nitrites in Patients with Acute Ischemic Snroke. Curr. Neurovasc. Res. 2017; 14 (4): 338–346. DOI: 10.2174/1567202614666171005122925.

21. Xu H.B., Xu Y.H., He Y., Xue F., Wei J., Zhang Y., Wu J. Decreased Serum Brain-Derived Neurotrophic May Indicate the Development of Poststroke Depression in Patients with Acute Ischemic Stroke: A Meta-Analisis. J. Stroke Ctrebrovasc. Dis. 2018; 27 (3): 709–715. DOI: 10.1016/j.jstrokectrebrovasdis.2017.10.003.

22. Bao M.H., Zhu S.Z., Gao X.Z., Sun H.S., Feng Z.P. Meta-Analysis on the Association between Brain-Derived Neurotrophic Factor Polymorphism rs6265 and ischemic Stroke, Poststroke Depression. J. Stroke Ctrebrovasc. Dis. 2018; 27 (6): 1599–1608. DOI: 10.1016/j.jstrokectrebrovasdis.2018.01.010.

23. Zhou J., Ma M.M., Fang J.H., Zhao L., Zhou V.K., Guo J., He L. Differences in drain-derived neurotrophic factor gene polymorphisms between acute ischemicstroke patients and healthy controls in the Han population of southwest China. Neural Regen Res. 2019; 14 (8): 1404–1411. DOI: 10.4103/1673-5374.253525.

24. Keshavarz P., Saberi A., Sharafshah A., Asgari K.,Rezaei S. Association of BDNF G196A Gene Polymorphism with Ischemic Stroke Occurrence and its 6-Month Outcome in an Iranian Population. Top Stroke Rehabil. 2016; 23 (4): 254–260. DOI: 10.1080/10749357.2016.1141491.

25. Luo W., Liu T., Li S., Wen H., Zhou F., Zafonte R., Luo X., Xu M., Black-Schaffer R., Wood L., Wang Y., Wang Q.M. The Serum BDNF Level Offers Minimum Predictive Value for Motor Function Recovery After Stroke. Transl Stroke Res. 2019; 10 (4): 342-351. DOI: 10.1007/s12975-018-0648-5.

26. Pedard M., Breniere C., Pernet N., Vergely C., Bejot Y., Marie C. Brainderived neurotrophic factor in peripheral blood mononuclear cells and stroke outcome. Exp. Biol. Med. 2018; 24: 15353702188115612. DOI: 10.1117/15353702188115612.

27. Mourao A.M., Vicente L.C.C., Abreu M.N.S., Vale Sant’Anna R., Vieira ELM., de Souza L.C., de Miranda A.S., Rachid M.A., Teixeira A.L. Plasma Levels of Brain-Derived Neurotrophic Factor are Associated with Prognosis in the Acute Phase of Ischemic Stroke. J. Stroke Ctrebrovasc. Dis. 2019; 28 (3): 735–740. DOI: 10.1016/j.jstrokectrebrovasdis.2018.11.013.

28. Algin A., Erdogan V., Aydin I., Poyraz MK., Sirik M. Clinical usefulness of brain-derived neurotrophic factor ana visinin-like protein-1 in early diagnostic tests for acute stroke. Am. J. Emerg. Med. 2019; pii: SO735-6757 (19)30124-X. DOI: 10.1016/j.ajem.2019.02.037.

29. Tejeda G.S., Esteban-Ortega G.M., San Antonio E., Vidaurre O.G. Prevention of exitotoxicity-induced processing of BDNF receptor TrkBFL leads to stroke neuroprotection. EMBO Mol. Med. 2019; 11 (7): e9950. DOI: 10.15252/emmm.201809950.

30. Lasek-Bal A., Jedrzejowska-Scypulka H., Rozicka J., Holecki M., Dulawa J., Lewin-Kowalik J. Low Concentration of BDNF in the Acute Phase ischemic Stroke as a Factor in Poor Prognosis in Terms of Functional Status of Patients. Med. Sci. Monit. 2015; 21: 3900–3905. DOI: 10.12659/MSM.895358

31. Ramagiri S., Taliyan R. Remote limb ischemic post conditioning during early reperfusion alleviates certebral ischemic reperfusion injury vita GSK-3β/CREB/BDNF pathway. Eur. J. Pharmacol. 2017; 803: 84–93. DOI: 10.1016/j.ejphar.2017.03.028.

32. He Y., Cai Z., Chen Y. Role of S-100β in stroke. Int. J. Neurosci. 2018; 128 (12): 1180–1187. DOI: 10.1080/00207454.2018.1481065.

33. Böttner T., Weyers S., Postert T., Sprengelmeyer R., Kuhn W. S-100 protein: serum marker of focal brain damage after ischemic territorial MCA infarction. Stroke. 1997; 28 (10): 1961–1965. DOI: 10.1161/01.STR.28.10.1961

34. Zhou S., Bao J., Wang Y., Pan S. S100β as a diomarker for differential diagnosis of intracerebral hemorrhage and ischemic stroke. Neurol. Res. 2016; 38 (4): 327–332. DOI: 10.1080/01616412.2016.1152675.

35. Branco J.P., Oliveira S., Sargento-Freitas J., Santos Costa J., Cordeiro G., Cunha L., Freire Goncalves A., Pinheiro J. S100β Protein as a Predictor of Poststroke Functional Outcome: A Prospective Study. J. Stroke Ctrebrovasc. Dis. 2018; 27 (7): 1890–1896. DOI: 10.1016/j.jsrokectrebrjvasdis.2018.02.046.

36. Wang Y., Chang C.F., Morales M., Chiang Y.H., Hoffer J.P. Protective effects of glial cell line-derived neurotrophic factor in ischemic brain injury. Ann. N.Y.Acad. Sci. 2002; 962: 423–437.

37. Matsuo R., Ago T., Kamouchi M.,Kuroda J., Kuwashiro T., Hata J., Sugimori H., Fukuda K., Gotoh S., Makihara N., Fukuhara M., Awano H., Isomura T., Suzuki K., Yasaka M., Okada Y., Kiyphara Y., Kitazono T. Clical significance of plasma VEGF value in ischemic stroke – research for biomarkers I ischemic stroke (REBIOS) study. BMC Neurol. 2013; 13: 32. DOI: 10.1186/1471-2377-13-32.

38. Geiseler S.J., Morland C. The Janus Face of VEGF in Stroke. Int. J. Mol. Sci. 2018; 19 (5). Pii: 1362. DOI: 10.3390/ijms190511362.

39. Jean LeBlanc N., Guruswamy R., ElAli A. Vascular Endothelial Growth Factor Isoform-B Stimulates Neurovascular Repair After Ischemic Stroke by Promoting the Functijn of Pericytes via Vascular Endothelial Growth Factor Receptor-1. Mol. Neurobiol. 2018; 55 (5): 3611–3626. DOI: 10.1007/s12035-017-0478-6.

40. Setyopranoto I., Sadeva A.H., Wibowo S., Widyadharma I.P.E. Comparison of Mean VEGF-A Expression Between Acute Ischemic Stroke Patients and Non-ischemic Stroke. Open Access Maced J. Med. Sci. 2019; 7 (5): 747–751. DOI: 10.3889/oamjms.2019.175.

41. Davis S.M., Pennypacker K.R. Targeting antioxidant enzyme expression as atherapeutic strategy for ischemic stroke. Neurochem int. 2017; 107: 23–32. DOI: 10.1016/j.neuint.2016.12.007.

42. Dayal S., Baumbach G.L., Arning E., Bottiglieri T., Faraci F.M., Lentz S.R. Deficiency of superoxide dismutase promotes cerebral vascular hypertrophy and vascular dysfunction in hyperhomocysteinemia. PLoS One. 2017; 12 (4): e0175732. DOI: 10.1371/journal.pone.0175732.

43. Liu Z., Cai Y., Zhang X., Zhu Z., He J. High serum levels of malondialdehyde and antioxidant enzymes are assopciated with post-stroke anxiety. Neurol. Sci. 2018; 39 (6): 999–1007. DOI: 10.1007/s10072-018-3287-4.

44. Schnaar R.L., Gerardy-Schahn R., Hildebrandt H. Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol. Rev. 2014; 94 (2): 461-518. DOI: 10.1152/phisrev.00033.2013.

45. Linnartz-Gerlach B., Mathews M., Neumann H. Sensing the neuronal glycocalyx by glial sialic acid binding immunoglobulin-like lectins. Neuroscience. 2014; 275: 113–124. DOI: 10.1016/j.neuroscience.2014.05.061.

46. Linnartz B., Neumann H. Microglial activatore (immunoreceptor tyrosine-based activation motif)- and inhibitory (immunoreceptor tyrosine-based inhibition motif)-signaling receptors for recognition of the neuronal glycocalyx). Glia. 2013; 61 (1): 37–46. DOI: 10.1002/glia.22359.


Review

For citations:


Golubev A.M., Petrova M.V., Grechko A.V., Zakharchenko V.E., Kuzovlev A.N., Ershov A.V. Molecular Markers of Ischemic Stroke. General Reanimatology. 2019;15(5):11-22. https://doi.org/10.15360/1813-9779-2019-5-11-22

Views: 2314


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)