Defects of Red Blood Cell Membranes in Patients with Brain Dysfunction (Pilot Study)
https://doi.org/10.15360/1813-9779-2019-6-11-20
Abstract
The aim of the paper: to identify promising diagnostic and prognostic biomarkers of pathological processes development based on the red blood cell membrane morphology and nanostructure in patients with brain disorders in the Intensive Care Unit.
Materials and methods. The study included 24 patients from the anesthesiology and resuscitation ward of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology. Blood was acquired from the patients for standard tests, and all further tests were performed in vitro. The images of red blood cells were obtained using the atomic force microscope «NTEGRA Рrima» (NT-MDT, Russia) in semi-contact mode.
Results. Patients from the anesthesiology and intensive care ward with traumatic brain injury, ischemic and hemorrhagic stroke, cerebral edema, and post-hypoxic encephalopathy had different blood cell shapes and localized defects of different topology on the surface of erythrocyte membranes including defects of pallor, torus, and nanostructure.
Conclusion. In this pilot study we have shown that several defects represent the trigger mechanisms for the development of a total membrane damage. Local topographic defects of nanostructures and abnormalities of erythrocyte morphology are irreversible. The number and quality of these abnormalities may eventually be used as a diagnostic and prognostic biomarker of pathological processes.
About the Authors
Andrey V. GrechkoRussian Federation
777 Lytkino 141534, Solnechnogorsk district, Moscow region
Igor V. Molchanov
Russian Federation
25 Petrovka Str., Build. 2, 107031 Moscow
Victoria A. Sergunova
Russian Federation
25 Petrovka Str., Build. 2, 107031 Moscow
Elena K. Kozlova
Russian Federation
25 Petrovka Str., Build. 2, 107031 Moscow
8 Trubetskaya Str., Bldg. 2, 119991 Moscow
Alexander M. Chernysh
Russian Federation
25 Petrovka Str., Build. 2, 107031 Moscow
8 Trubetskaya Str., Bldg. 2, 119991 Moscow
References
1. Costa K.D. Imaging and probing cell mechanical properties with the atomic force microscope. Meth. Mol. Biol. 2006; 319: 331–361. DOI: 10.1007/978-1-59259-993-6_17. PMID: 16719364
2. Martínez-Vieyra V., Rodríguez-Varela M., García-Rubio D., De la Mora-Mojica B, Méndez-Méndez J, Durán-Álvarez C, Cerecedo D. Alterations to plasma membrane lipid contents affect the biophysical properties of erythrocytes from individuals with hypertension. Biochim Biophys Acta Biomembr. 2019; 1861 (10) 182996 DOI: 10.1016/j.bbamem.2019.05.018.
3. Berezina T.L., Zaets S.B., Morgan C. Influence of storage on red blood cell rheological properties. J. Surg. Res. 2002; 102 (1): 6–12. DOI: 10.1006/jsre.2001.6306. PMID: 11792145
4. Yusipovich A.I., Bryzgalova N.Y., Parshina E.Y., Lomakin A.G., Rodnenkov O.V., Levin G.G., Maksimov G.V., Rubin A.B. Evaluation of erythrocyte shape and status by laser interference microscopy. Bull. Exp. Biol. Med. 2008; 145 (3): 382-385. DOI: 10.1007/s10517-008-0097-3. PMID: 19039950
5. Betz T., Bakowsky U., Müller M., Lehr C-M., Bernhardt I. Conformational change of membrane proteins leads to shape changes of red blood cells. Bioelectrochemistry. 2007; 70: 122–126. DOI: 10.1016/j.bioelechem.2006.03.019. PMID: 16713378
6. Cabrales P. Effects of erythrocyte flexibility on microvascular perfusion and oxygenation during acute anemia. Am. J. Physiolol. Heart Cire. Physiol. 2007; 293 (2): 1206–1215. DOI: 10.1152/ajpheart.00109.2007. PMID: 17449555
7. Manchenko E.A., Kozlova E.K., Sergunova V.A., Chernysh A.M. Homogeneous Deformation of Native Erythrocytes During Long-Term Storage. Obshchaya Reanimatologiya=General Reanimatology. 2019; 15 (5): 4–10. [In Russ.]. DOI: 10.15360/1813-9779-2019-5-4-10
8. Skoumalová A., Herget J., Wilhelm J. Hypercapnia protects erythrocytes against free radical damage induced by hypoxia in exposed rats. Cell Biochem. Funct. 2008; 26 (7): 801–807. DOI: 10.1002/cbf.1509. PMID: 18683905
9. Girotti A.W., Thomas J.P. Damaging effects of oxygen radicals on resealed erythrocyte ghosts. J. Biol. Chem. 1984; 259 (3): 1744–1752. PMID: 6546380
10. Vignini A., Alia S., Pugnaloni S., Giulietti A., Bacchetti T., Mazzanti L., Luzzi S., Fiorini R. Erythrocyte membrane fluidity in mild cognitive impairment and Alzheimer’s disease patients. Exp. Gerontol. 2019; 128: 110754. DOI: 10.1016/j.exger.2019.110754.
11. Katyuhin L.N. Rheological properties of erythrocytes. Modern research methods. Rossijskij fiziologicheskij zhurnal im. I.M. Sechenova. 1995; 81 (6): 122–129 [In Russ.]
12. Kotovskaya Yu.V. Metabolic syndrome: prognostic value and modern approaches to complex therapy. Serdtse. 2005; 4 (5): 236–241 [In Russ.]
13. Rojtberg G.E. Metabolic syndrome. Moscow: MEDpress-inform; 2007: 224. ISBN 5-98322-253-8 [In Russ.]
14. Spyratou E., Dilvoi M., Patatoukas G., Platoni K., Makropoulou M., Efstathopoulos E.P.. Probing the Effects of Ionizing Radiation on Young’s Modulus of Human Erythrocytes Cytoskeleton using Atomic Force Microscopy. J.Med. Phys. 2019; 44 (2): 113–117. DOI: 10.4103/jmp.JMP_95_18.
15. Moroz V.V., Chernysh A.M., Kozlova E.K., Borshegovskaya P.Y., Bliznjuk U.A., Rysaeva R.M., Gudkova O.Y. Comparison of red blood cell membrane microstructure after different physicochemical influences: Atomic force microscope research. J. Crit. Care. 2010; 25 (3): 539. 1–12. DOI: 10.1016/j.jcrc.2010.02.007. PMID: 20381299
16. Ji X.L., Ma Y.M., Yin T., Shen M.S., Xu X., Guan W. Application of atomic force microscopy in blood research. World J. Gastroenterol. 2005; 11 (11): 1709–1711. DOI: 10.3748/wjg.v11.i11.1709. PMID: 15786556
17. Girasole M., Cricenti A., Generosi R., Congiu-Castellano A., Boffi F., Arcovito A., Boumis G., and Amiconi G. Atomic force microscopy study of erythrocyte shape and membrane structure after treatment with a dihydropyridinic drug. Appl. Phys. Lett. 2000; 76: 3650–3652. DOI: 10.1063/1.126736
18. Betz T., Bakowsky U., Müller M.R., Lehr C.M., Bernhardt I. Conformational change of membrane proteins leads to shape changes of red blood cells. Bioelectrochemistry. 2007; 70: 122–126. DOI: 10.1016/j.bioelechem.2006.03.019. PMID: 16713378
19. Zhang Y., Zhang W., Wang S., Wang C., Xie J., Chen X., Xu Y., Mao P. Detection of erythrocytes in patients with multiple myeloma using atomic force microscopy. Scanning. 2012; DOI: 10.1002/sca.21008. PMID: 22311545
20. Moroz V.V., Chernysh A.M., Kozlova E.K., Sergunova V.A., Gudkova O.E., Fedorova M.S., Kirsanova A.K., Novoderzhkina I.S. Impairments in the Nanostructure of Red Blood Cell Membranes in Acute Blood Loss and Their Correction with Perfluorocarbon Emulsion. Obshchaya Reanimatologiya=General Reanimatology. 2011; 7 (2): 5. (In Russ.) DOI: 10.15360/1813-9779-2011-2-5
21. Khromova V.S., Myshkin A.E. Coagulation of zinc-modified hemoglobin. Russian Journal of General Chemistry. 2002; 72 (10): 1645–1649. DOI: 10.1023/A: 1023356221708
22. Moroz V.V., Myagkova E.A., Sergunova V.A., Gudkova O.E., Ostapchenko D.A., Chernysh A.M., Reshetnyak V.I. Morphological Features of Red Blood Cells in Patients with Severe Concomitant Injury. General Reanimatology=Obshchaya Reanimatologiya. 2013; 9 (3): 14. (In Russ.) DOI: 10.15360/1813-9779-2013-3-14
23. Lyuis S.M. Practical Hematology.Moscow: GEOTAR-media; 2009: 672. ISBN 978-5-9704-1192-6 [In Russ.]
24. Robier C, Klescher D, Reicht G, Amouzadeh-Ghadikolai O, Quehenberger F, Neubauer M. Dacryocytes are a common morphologic feature of autoimmune and microangiopathic haemolytic anaemia. Clin. Chem. Lab. Med. 2015; 53 (7): 1073–1076. DOI: 10.1515/cclm2014-0936. PMID: 25503671
25. Sergunova V.A., Manchenko E.A., Gudkova O.Y. Hemoglobin: Modification, Crystallization, Polymerization (Review). Obshchaya Reanimatologiya=General Reanimatology. 2016; 12 (6): 49–63. (In Russ.) DOI: 10.15360/1813-9779-2016-6-49-63
26. Lim H. W. G., Wortis M., Mukhopadhyay R. Stomatocyte–discocyte–echinocyte sequence of the human red blood cell: Evidence for the bilayer couple hypothesis from membrane mechanics. Proc. Natl. Acad. Sci. USA. 2002; 99 (26): 16766–16769. DOI: 10.1073/pnas.202617299. PMID: 12471152
27. Kozlova E, Chernysh A, Moroz V, Sergunova V, Gudkova O, Manchenko E. Morphology, membrane nanostructure and stiffness for quality assessment of packed red blood cells. Sci. Rep. 2017; 7 (1): 7846. DOI: 10.1038/s41598-017-08255-9. PMID: 28798476
28. Ishutina N. A., Andrievskaya I. A. Changes in indicators of free-radical status, antioxidant defense, and morphological changes in peripheral red blood cells of pregnant women in the first trimester with cytomegalovirus infection. Byulleten fiziologii i patologii dykhaniya. 2018; 68: 57–62. [In Russ.] DOI: 10.12737/article_5b18ba014d2d06.81485843
29. Lvov S.E., Nazarov S.B., Molchanov O.S., Pakhrova O.A. Features of the surface architectonics of red blood cells in diseases of the hip joint. Vestnik Ivanovskoj medicinskoj akademii. 2008; 13 (1–2): 46–49. [In Russ.]
30. Chignard M., Le Couedic J. P., Tence M., Vargaftig B. B., Benveniste J. The role of platelet-activating factor in platelet aggregation. Nature. 1979; 279: 799–800. DOI: 10.1038/279799a0
Review
For citations:
Grechko A.V., Molchanov I.V., Sergunova V.A., Kozlova E.K., Chernysh A.M. Defects of Red Blood Cell Membranes in Patients with Brain Dysfunction (Pilot Study). General Reanimatology. 2019;15(6):11-20. https://doi.org/10.15360/1813-9779-2019-6-11-20