Glial Cell Architecture Dynamics in Dentate Gyrus and CA4 Area of Wistar Rat Hippocampus Following 20-minute Occlusion of Common Carotid Arteries
https://doi.org/10.15360/1813-9779-2019-6-26-37
Abstract
Aim. To study the distribution and spatial organization of dentate gyrus (DG) astrocytes and CA4 area of hippocampus of Wistar rats following 20-minute occlusion of common carotid arteries (OCCA) compared to sham-operated control animals.
Material and methods. Histological (Nissl staining with hematoxylin and eosin), immunohistochemical (GFAP, MAP-2) and morphometric methods were used. Astrocytes and neurons in control (sham-operated animals, n = 5) group, after 6 hours (n=5), 1 days (n=5), 3 days (n=5), 7 days (n=5), 14 days (n=5) and 30 days (n=5) after 20-minute OCCA were studied on thin (4 µm) serial frontal sections of the hippocampus. Fractal analysis (ImageJ 1.52; fraclac 2.5 plugin) was used to obtain additional quantitative information on the spatial organization of astrocyte networks. Statistical hypotheses were tested using nonparametric criteria.
Results. 30 days after the 20-minute OCCA, only 5.3% of CA4 neurons were irreversibly destroyed and the total numerical density of DG granular cells remained at the control level. Hypertrophy and increased complexity of the spatial organization of astrocyte processes were observed 6 hours and 1 day after OCCA and persisted for 30 days. Astrogliosis was accompanied by an increased relative area of GFAP-positive material and fractal dimension and reduced lacunarity of the astrocyte network. The latter was especially evident in 1, 14 and 30 days after the OCCA.
Conclusion. After the 20-minute OCCA, the density of GFAP-positive material increased, the fibroarchitecture reorganized and gained more complexity due to the branching of astrocyte processes. At the same time, the total numerical density of neurons changed only slightly. All this indicated the probable role of astrocytes in post-ischemic activation of natural neuroprotection mechanisms.
Keywords
About the Authors
Anna V. GorbunovaRussian Federation
12 Lenin Str., 644099 Omsk
Dmitry B. Avdeev
Russian Federation
12 Lenin Str., 644099 Omsk
Sergey S. Stepanov
Russian Federation
12 Lenin Str., 644099 Omsk
Victor A. Akulinin
Russian Federation
12 Lenin Str., 644099 Omsk
Alexander S. Stepanov
Russian Federation
12 Lenin Str., 644099 Omsk
Anastasia Yu. Shoronova
Russian Federation
12 Lenin Str., 644099 Omsk
Artem A. Samsonov
Russian Federation
12 Lenin Str., 644099 Omsk
References
1. Paxinos G., Watson C. The Rat Brain in Stereotaxic Coordinates. 5th ed. San Diego: Elsevier Academic Press; 2005.
2. Senzai Y. Function of local circuits in the hippocampal dentate gyrus-CA3 system. Neurosci Res. 2019 Mar; 140: 43–52. PMID: 30408501 DOI: 10.1016/j.neures.2018.11.003.
3. Fares J., Bou Diab Z., Nabha S., Fares Y. Neurogenesis in the adult hippocampus: history, regulation, and prospective roles. Int J Neurosci. 2019 Jun; 129 (6): 598-611. PMID: 30433866 DOI: 10.1080/00207454.2018.1545771.
4. Abbott L.C., Nigussie F. Adult neurogenesis in the mammalian dentate gyrus. Anat Histol Embryol. 2019 Sep 30. PMID: 31568602 DOI: 10.1111/ahe.12496.
5. Miller S.M., Sahay A. Functions of adult-born neurons in hippocampal memory interference and indexing. Nat Neurosci. 2019 Oct; 22 (10): 1565–1575. PMID: 31477897 DOI: 10.1038/s41593-019-0484-2.
6. Alkadhi K.A. Cellular and molecular differences between area ca1 and the dentate gyrus of the hippocampus. Mol Neurobiol. 2019 Sep; 56 (9): 6566–6580. PMID: 30874972 DOI: 10.1007/s12035-019-1541-2.
7. Becerra-Calixto A., Cardona-Gómez G.P. The Role of Astrocytes in Neuroprotection after Brain Stroke: Potential in Cell Therapy. Front Mol Neurosci. 2017 Apr 3; 10 (159): 88. PMID: 28420961. DOI: 10.3389/fnmol.2017.00088.
8. Mohn T.C., Koob A.O. Adult astrogenesis and the etiology of cortical neurodegeneration. J. Exp. Neurosci. 2015; 9: 25–34. PMID: 26568684. DOI: 10,4137 / JEN.S25520.
9. Rose C. R., Felix L., Zeug A., Dietrich D., Reiner A., Henneberger C. Astroglial glutamate signaling and uptake in the hippocampus. Front. Mol. Neurosci. 2018; 10 (451): 1−20. PMID: 29386994. DOI: 10.3389/fnmol.2017.00451
10. Plata A., Lebedeva A., Denisov P., Nosova O., Postnikova T.Y., Pimashkin A., Brazhe A., Zaitsev A.V., Rusakov D.A., Semyanov A. Astrocytic Atrophy Following Status Epilepticus Parallels Reduced Ca2+ Activity and Impaired Synaptic Plasticity in the Rat Hippocampus. Front Mol Neurosci. 2018 Jun 26; 11: 215. PMID: 29997475. DOI: 10,3389 / fnmol.2018.00215
11. Pirici D., Mogoantă L., Mărgăritescu O., Pirici I., Tudorică V., Coconu M. Fractal analysis of astrocytes in stroke and dementia. Rom. J. Morphol. Embryol. 2009; 50 (3): 381−390. PMID: 19690763.
12. Ostergaard P.J., Jensen M.B. Histological quantification of astrocytosis after cerebral infarction: A systematic review. Int. J. Neurosci. 2013; 123 (7): 439−443. PMID: 23311713. DOI: 10,3109 / 00207454.2013.765421.
13. Stepanov A.S., Akulinin V.A., Mysik A.V., Stepanov S.S., Avdeev D.B. Neuro-Glio-Vascular Complexes of the Brain After Acute Ischemia. Obshchaya Reanimatologiya=General Reanimatology. 2017; 13 (6): 6–17. [In Russ.] DOI: 10.15360/1813-9779-2017-6-6-17
14. Stepanov S.S., Akulinin V.A., Avdeev D.B., Stepanov A.S., Gorbunova A.V. Reorganization of astrocyte neocortex of white rats after a 20- minute occlusion of the common carotid arteries. Rossijskij fiziologicheskij zhurnal im. I.M. Sechenova. 2019; 105 (5): 578–590. [In Russ.] DOI: 10.1134/S086981391905011X
15. Karperien A., Ahammer H., Jelinek H.F. Quantitating the subtleties of microglial morphology with fractal analysis. Front. Cell. Neurosci. 2013; 7 (3): 1−18. PMID: 23386810. DOI: 10.3389/fncel.2013.00003.
16. Isaeva V.V., Pushchina E.V., Karetin Yu.A. Changes in morphometric parameters and fractal dimension of spinal cord neurons in the ontogenesis of Sim Oncorhynchus masou. Biologiya morya. 2006; 32 (2): 125−133. [In Russ.]
17. Lopez M.S., Vemuganti R. Modeling transient focal ischemic stroke in rodents by intraluminal filament method of middle cerebral artery occlusion. Methods Mol Biol. 2018; 1717: 101–113. PMID: 29468587 DOI: 10.1007/978-1-4939-7526-6_9.
18. Vavilova V.A., Gushchin Ya.A. Modeling global cerebral ischemia in Mongolian gerbils. Laboratornye zhivotnye dlya nauchnyh issledovanij. 2019; 2. [In Russ.] DOI: 10.29296/2618723X-2019-02-03
19. Gennaro M, Mattiello A, Pizzorusso T. Rodent models of developmental ischemic stroke for translational research: strengths and weaknesses. Neural. Plast. 2019 Apr 4; 2019: 5089321. PMID: 31093271 DOI: 10.1155/2019/5089321.
20. Borovikov V. Statistica. The art of analyzing data on a computer. St. Petersburg: Peter; 2003: 688. [In Russ.]
21. Escartin C., Guillemaud O., Carrillo-de Sauvage M.A. Questions and (some) answers on reactive astrocytes. Glia. 2019 Dec; 67 (12): 2221–2247. PMID: 31429127 DOI: 10.1002/glia.23687.
22. Verkhratsky A., Ho M.S., Vardjan N., Zorec R., Parpura V. General pathophysiology of astroglia. Adv Exp Med Biol. 2019; 1175: 149–179. PMID: 31583588 DOI: 10.1007/978-981-13-9913-8_7.
23. Zhou B., Zuo Y.X., Jiang R.T. Astrocyte morphology: Diversity, plasticity, and role in neurological diseases. CNS Neurosci Ther. 2019; 25 (6): 665–673. PMID: 30929313 DOI: 10.1111/cns.13123.
24. Zuidema J.M., Gilbert R.J., Gottipati M.K. Biomaterial approaches to modulate reactive astroglial response. Cells Tissues Organs. 2018; 205 (5-6): 372–395. PMID: 30517922 DOI: 10.1159/000494667.
25. Zhou Y.D. Glial Regulation of Energy Metabolism. Adv Exp Med Biol. 2018; 1090: 105–121. DOI: 10.1007/978-981-13-1286-1_6.
Review
For citations:
Gorbunova A.V., Avdeev D.B., Stepanov S.S., Akulinin V.A., Stepanov A.S., Shoronova A.Yu., Samsonov A.A. Glial Cell Architecture Dynamics in Dentate Gyrus and CA4 Area of Wistar Rat Hippocampus Following 20-minute Occlusion of Common Carotid Arteries. General Reanimatology. 2019;15(6):26-37. https://doi.org/10.15360/1813-9779-2019-6-26-37