Metabolism of Microbiota in Critical Illness (Review and Postulates)
https://doi.org/10.15360/1813-9779-2019-6-62-79
Abstract
This article discusses the importance of eliciting the mechanisms of action and the metabolism of microbiota in the critically ill patients, as well as the role of nutrition specialist in the management of these patients.
In critically ill patients the impaired regulation of endogenous metabolic processes and protein-energy deficiency are aggravated by abnormal microbiota metabolic processes. There is growing awareness of the importance of studying microbial metabolism in the general metabolic process. Its implications for the improved efficacy of treatment in critical care and rehabilitation are obvious.
Current international intensive care guidelines are being constantly revised in response to the new research data available on the mechanisms of critical illness. The course of the latter may significantly associate with the metabolic activity of human microbiota. Active management of metabolic processes is being sought through the subordination of bacterial metabolism to the interests of the host. Both antimicrobial and bioformulations (prebiotics, metabiotics) will be used in the long term in a targeted manner with the control of key microbial metabolites through available laboratory monitoring tools.
Based on the literature data and the original research, the author formulates postulates of the microbiota metabolism in critical illness, introduces the concepts of «invisible organ dysfunction» and «signaling bacterial molecules», offers answers to the eternal «what is to be done?» question and suggests using a number of microbial aromatic amino acids metabolites as an integral indicator of a course of critical illness.
About the Author
Natalia V. BeloborodovaRussian Federation
25 Petrovka Str., Build. 2, 107031 Moscow
References
1. Dickson R.P. The microbiome and critical illness. Lancet Respir. Med. 2016; 4 (1): 59–72. DOI: 10.1016/S2213-2600(15)00427-0. PMID: 26700442
2. Cho I., Blaser M.J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 2012; 13 (4): 260–270. DOI: 10.1038/nrg3182. PMID: 22411464
3. Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I. Microbial ecology: human gut microbes associated with obesity. Nature. 2006; 444 (7122): 1022–1023. DOI: 10.1038/4441022a. PMID: 17183309
4. Porras D., Nistal E., Martínez-Flórez S., González-Gallego J., GarcíaMediavilla M.V., Sánchez-Campos S. Intestinal Microbiota Modulation in Obesity-Related Non-alcoholic Fatty Liver Disease. Front Physiol. 2018; 9: 1813. DOI: 10.3389/fphys.2018.01813. PMID: 30618824
5. Chernevskaya E.A., Beloborodova N.V. Gut Microbiome in Critical Illness (Review). Obshchaya Reanimatologiya=General Reanimatology. 2018; 14(5): 96–119. [In Russ.] DOI: 10.15360/1813-9779-2018-5-96-119.
6. Tringe S.G., Hugenholtz P. A renaissance for the pioneering 16S rRNA gene. Curr. Opin. Microbiol. 2008; 11: 442–446. DOI: 10.1016/j.mib. 2008.09.011. PMID: 18817891
7. Beloborodova N.V., Moroz V.V., Osipov А.А., Bedova А.Yu., Olenin А.Yu., Getsina M.L., Karpova O.V., Olenina E.G. Normal level of sepsis-associated phenylcarboxylic acids in human serum. Biokhimiya. 2015; 80 (3): 449–455. [In Russ.] JCR IF-1,303 DOI: 10.1134/S0006297915030128. PMID: 25761691
8. Clarke G., Stilling R.M., Kennedy P.J., Stanton C., Cryan J.F., Dinan T.G. Minireview: Gut Microbiota: The Neglected Endocrine Organ. Mol. Endocrinol. 2014; 28 (8): 1221–1238. DOI: 10.1210/me.2014-1108. PMID: 24892638
9. Hooper L.V., Macpherson A.J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 2010; 10 (3): 159–169. DOI: 10.1038/nri2710. PMID: 20182457
10. Kau A.L., Ahern P.P., Griffin N.W., Goodman A.L., Gordon J.I. Human nutrition, the gut microbiome and the immune system. Nature. 2011; 474 (7351): 327–336. DOI: 10.1038/nature10213. PMID: 21677749
11. Fung T.C., Olson C.A., Hsiao E.Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 2017; 20 (2): 145–155. DOI: 10.1038/nn.4476. PMID: 28092661
12. Hornung B., dos Santos V.A.P.M., Smidt H., Schaap P.J. Studying microbial functionality within the gut ecosystem by systems biology. Genes and Nutrition. 2018; 13: 5. DOI: 10.1186/s12263-018-0594-6.
13. Kim C.H. Immune regulation by microbiome metabolites. Immunology. 2018; 154 (2): 220. DOI: 10.1111/imm.12930. PMID: 29569377
14. Beloborodova N.V. SEPSIS. The metabolomic approach. (monography). М.: MIA; 2018: 272 p [In Russ.]. ISBN 978-5-9986-0350-1
15. Vincent J.L. Metabolic support in sepsis and multiple organ failure: More questions than answers. Crit. Care Med. 2007; 35 (9 Suppl): S436- 40. DOI: 10.1097/01.CCM.0000278601.93369.72. PMID: 17713390
16. Gelfend B.R., Saltanov A.I. Intensive therapy: national guideline: in 2 vol. М.: GEOTAR-Media; 2009: 1744 p. [In Russ.]. ISBN 978-5-9704- 0939-8
17. Mtaweh H., Soto Aguero M.J., Campbell M. Systematic review of factors associated with energy expenditure in the critically ill. Clin. Nutr. ESPEN. 2019; 33: 111–124. DOI: 10.1016/j.clnesp.2019.06.009
18. Alverdy J.C. Hypermetabolism and Nutritional Support in Sepsis. Surg. Infect. (Larchmt). 2018; 19 (2): 163–167. DOI: 10.1089/sur.2017.313. PMID: 29394142
19. Viana M.V., Pantet O., Bagnoud G., Martinez A., Favre E., Charrière M., Favre D., Eckert P., Berge M.M. Metabolic and Nutritional Characteristics of Long-Stay Critically Ill Patients. J. Clin. Med. 2019; 8 (7): 985. DOI: 10.3390/jcm8070985.
20. Marshall J.C. Gastrointestinal flora and its alterations in critical illness. Curr. Opin. Clin. Nutr. Metab. Care. 1999; 2 (5): 405–411. DOI: 10.1097/00075197-199909000-00009. PMID: 10589383
21. Blum H.E. The human microbiome. Adv. Med. Sci. 2017; 62: 414–420. DOI: 10.1016/j.advms.2017.04.005. PMID: 28711782
22. Beloborodova N.V. Chapter 1. Interaction of host-microbial metabolism in sepsis In: Kumar V. (Ed.) Sepsis. Rijeka, Croatia: InTech; 2017: 3–19. DOI: 10.5772/68046 ISBN 978-953-51-3395-7. https: //www.intechopen.com/books/sepsis
23. Bukharin O. V., Ginzburg A. L., Romanova Yu. M., El-Registan G. I. Mechanisms of bacterial survival.М.: Medicina; 2005: 367 [In Russ.].
24. Hsu C.-W. Glycemic control in critically ill patients. World J. Crit. Care Med. 2012; 1 (1): 31–39. DOI: 10.5492/wjccm.v1.i1.31.
25. van den Berghe G., Wilmer A., Hermans G. Intensive insulin therapy in the medical ICU. N. Engl. J. Med. 2006; 354: 449–461. DOI: 10.1016/s0084-3741(08)70038-6
26. Orford N.R. Intensive insulin therapy in septic shock. Crit. Care Resusc. 2006; 8 (3): 230–234. PMID: 16930111
27. Farrokhi F., Smiley D., Umpierrez G.E. Glycemic control in non-diabetic critically ill patients. Best. Pract. Res. Clin. Endocrinol. Metab. 2011; 25 (5): 813–824. DOI: 10.1016/j.beem.2011.05.004. PMID: 21925080
28. Yamada T., Shojima N., Noma H., Yamauchi T., Kadowaki T. Glycemic control, mortality, and hypoglycemia in critically ill patients: a systematic review and network meta-analysis of randomized controlled trials. Intensive Care Med. 2017; 43: 1–15. DOI: 10.1007/s00134-016-4523-0.
29. Yatabe T., Inoue S., Sakaguchi M, Egi M. The optimal target for acute glycemic control in critically ill patients: a network meta-analysis. Intensive Care Med. 2017; 43: 16–28. DOI: 10.1007/s00134-016-4558-2.
30. Fu Y., Sun Y., Zhang J., Cheng Y. Intensive glucose control for critically ill patients: an updated meta-analysis. Endocr. Connect. 2018; 7 (12): 1288–1298. DOI: 10.1530/EC-18-0393. PMID: 30352416
31. Krinsley J. Association between hyperglycemia and increased hospital mortality in a heterogeneous population of critically ill patients. Mayo Clin. Proc. 2003. 78 (12): 1471–1478. DOI: 10.4065/78.12.1471. PMID: 14661676
32. Krinsley J.S., Grover A. Severe hypoglycemia in critically ill patients: risk factors and outcomes. Crit. Care Med. 2007; 35: 2262–2267. DOI: 10.1097/01.CCM.0000282073.98414.4B. PMID: 17717490
33. Clain J., Ramar K., Surani S.R. Glucose control in critical care. World J Diabetes. 2015; 6 (9): 1082–1091. DOI: 10.4239/wjd.v6.i9.1082. PMID: 26265994
34. Han H., Li Y., Fang J., Liu G., Yin J., Li T., Yin Y. Gut microbiota and type 1 diabetes. Int. J. Mol. Sci. 2018; 19 (4): 995. DOI: 10.3390/ijms19040995. PMID: 29584630
35. Zhao L., Zhang F., Ding X., Wu G., Lam Y.Y., Wang X., Fu H., Xue X., Lu C., Ma J., Yu L., Xu C., Ren Z., Xu Y., Xu S., Shen H., Zhu X., Shi Y., Shen Q., Dong W., Liu R., Ling Y., Zeng Y., Wang X., Zhang Q., Wang J., Wang L., Wu Y., Zeng B., Wei H., Zhang M., Peng Y., Zhang C. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018; 359 (6380): 1151. DOI: 10.1126/science.aao5774. PMID: 29590046
36. Hirose T., Shimizu K., Ogura H., Tasaki O., Hamasaki T., Yamano S., Ohnishi M., Kuwagata Y., Shimazu T. Altered balance of the aminogram in patients with sepsis – the relation to mortality. Clin. Nutr. 2014; 33 (1): 179–182. DOI: 10.1016/j.clnu.2013.11.017. PMID: 24377412
37. Carro M.L.F. Proteins, Catabolism and Sepsis: A Literature Review. EC Nutrition. 2018; 13.3: 126–134.
38. Nyangale E.P., Mottram D.S., Gibson G.R. Gut microbial activity, implications for health and disease: The potential role of metabolite analysis. J. Proteome Res. 2012; 11 (12): 5573. DOI: 10.1021/pr300637d. PMID: 23116228
39. Bröer S., Bröer A. Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem J. 2017; 474 (12): 1935–1963. DOI: 10.1042/BCJ20160822. PMID: 28546457
40. Sitkin S.I., Vakhitov T.Y., Demyanova E.V. Microbiome, gut dysbiosis and inflammatory bowel disease: That moment when the function is more important than taxonomy. Almanac of Clinical Medicine. 2018; 46 (5): 396. DOI: 10.18786/2072-0505-2018-46-5-396-425.
41. Su L., Li H., Xie A., Liu D., Rao W., Lan L., Li X., Li F., Xiao K., Wang H., Yan P., Li X., Xie L. Dynamic changes in amino acid concentration profiles in patients with sepsis. PLoS One. 2015; 10 (4): e0121933. DOI: 10.1371/journal.pone.0121933. PMID: 25849571
42. Gunst J., Vanhorebeek I., Thiessen S.E., Van den Berghe G. Amino acid supplements in critically ill patients. Pharmacol. Res. 2018; 130: 127–131. DOI: 10.1016/j.phrs.2017.12.007. PMID: 29223645
43. Beloborodova N.V., Sarshor Yu.N., Bedova A.Yu., Chernevskaya E.A., Pautova A.K. Involvement of Aromatic Metabolites in the Pathogenesis of Septic Shock. Shock. 2018; 50 (3): 273–279. DOI: 10.1097/SHK. 0000000000001064. PMID: 29189605
44. Fedotcheva N. I., Litvinova E. G., Osipov A. A., Olenin A. Yu., Moroz V. V., Beloborodova N. V. The effect of microbial metabolites of phenolic nature on the activity of mitochondrial enzymes. Biofizika. 2015; 60 (6): 1118–1124 [In Russ.].
45. Mottawea W., Chiang C.-K., Mühlbauer M., Starr A.E., Butcher J., Abujamel T., Deeke S.A., Brandel A., Zhou H., Shokralla S., Hajibabaei M., Singleton R., Benchimol E.I., Jobin C., Mack D.R., Figeys D., Stintzi A. Altered intestinal microbiota–host mitochondria crosstalk in new onset Crohn’s disease. Nat. Commun. 2016; 7: 13419. DOI: 10.1038/ncomms13419.
46. Franco-Obregon A., Gilbert J.A. The Microbiome-Mitochondrion connection: Common Ancestries, Common Mechanisms, Common Goals. mSystems. 2017; 2 (3): e00018-17. DOI: 10.1128/mSystems.00018-17. PMID: 28497122
47. Waldecker M., Kautenburger T., Daumann H., Busch C., Schrenk D. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J. Nutr. Biochem. 2008; 19 (9): 587–593. DOI: 10.1016/j.jnutbio.2007.08.002. PMID: 18061431
48. Kaelin W.G.Jr., McKnight S.L. Influence of metabolism on epigenetics and disease. Cell. 2013; 153 (1): 56–69. DOI: 10.1016/j.cell.2013.03.004. PMID: 23540690
49. Baeza J., Smallegan M.J., Denu J.M. Mechanisms and Dynamics of Protein Acetylation in Mitochondria. Trends Biochem. Sci. 2016; 41 (3): 231–244. DOI: 10.1016/j.tibs.2015.12.006. PMID: 26822488
50. Menzies K.J., Zhang H., Katsyuba E., Auwerx J. Protein acetylation in metabolism — metabolites and cofactors. Nat Rev Endocrinol. 2016; 12 (1): 43–60. DOI: 10.1038/nrendo.2015.181. PMID: 26503676
51. Henze K., Martin W. Evolutionary biology: essence of mitochondria. Nature. 2003; 426 (6963): 127–128. DOI: 10.1038/426127a.
52. McBride H.M., Neuspiel M., Wasiak S. Mitochondria: more than just a powerhouse. Curr. Biol. 2006; 16 (14): R551–560. DOI: 10.1016/j. cub.2006.06.054. PMID: 16860735
53. Sanchis-Gomar F., García-Giménez J.L., Gómez-Cabrera M.C., Pallardó F.V. Mitochondrial biogenesis in health and disease. Molecular and therapeutic approaches. Curr. Pharm. Des. 2014; 20 (35): 5619–5633. DOI: 10.2174/1381612820666140306095106. PMID: 24606801
54. Chandel N.S. Evolution of mitochondria as signaling organelles. BMC Biol. 2014; 12 (1): 34. DOI: 10.1186/1741-7007-12-34. PMID: 24884669
55. Vakhitov T.Ya., Sitkin S.I. The concept of a superorganism in biology and medicine. Eksperim. i klin. gastroenterologiya.2014; 7 (107): 72–85 [In Russ.]
56. Klingensmith N.J., Coopersmith C.M. The gut as the motor of multiple organ dysfunction in critical illness. Crit. Care Clin. 2016; 32 (2): 203–212. DOI: 10.1016/j.ccc.2015.11.004. PMID: 27016162
57. Carrico C.J., Meakins J.L., Marshall J.C., Fry D., Maier R.V. Multipleorgan-failure syndrome. The gastrointestinal tract: the «motor» of MOF. Arch Surg. 1986; 121 (2): 196–208.
58. Mittal R., Coopersmith C.M. Redefining the gut as the motor of critical illness. Trends Mol. Med. 2014; 20 (4): 214–223. DOI: 10.1016/j. molmed.2013.08.004. PMID: 24055446
59. Clark J.A., Coopersmith C.M. Intestinal crosstalk: a new paradigm for understanding the gut as the «motor» of critical illness. Shock. 2007; 28 (4): 384–393. DOI: 10.1097/shk.0b013e31805569df. PMID: 17577136
60. Singer M., Deutschman C.S., Seymour C.W., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G.R., Chiche J.D., Coopersmith C.M., Hotchkiss R.S., Levy M.M., Marshall J.C., Martin G.S., Opal S.M., Rubenfeld G.D., van der Poll T., Vincent J.L., Angus D.C. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315 (8): 801–810. DOI: 10.1001/jama.2016.0287. PMID: 26903338
61. Singh V., Roth S., Llovera G., Sadler R., Garzetti D., Stecher B., Dichgans M., Liesz A. Microbiota dysbiosis controls the neuroinflammatory response after stroke. J. Neurosci. 2016; 36 (28): 7428. DOI: 10.1523/ jneurosci.1114-16.2016. PMID: 27413153
62. Dovrolis N., Kolios G., Spyrou G.M., Maroulakou I. Computational profiling of the gut-brain axis: Microflora dysbiosis insights to neurological disorders. Brief. Bioinform. 2019; 20 (3): 825–841. DOI: 10.1093/bib/bbx154. PMID: 29186317
63. Averina O.V., Danilenko V.N. Human intestinal microbiota: Role in development and functioning of the nervous system. Microbiology. 2017; 86 (1): 1–18. DOI: 10.1134/S0026261717010040.
64. Yissachar N., Zhou Y., Ung L., Lai N.Y., Mohan J.F., Ehrlicher A., Weitz D.A., Kasper D.L., Chiu I.M., Mathis D., Benoist C. An Intestinal Organ Culture System Uncovers a Role for the Nervous System in MicrobeImmune Crosstalk. Cell. 2017; 168 (6): 1135–1148. DOI: 10.1016/j.cell.2017.02.009. PMID: 28262351
65. Kasatpibal N., Whitney J.D., Saokaew S., Kengkla K., Heitkemper M.M., Apisarnthanarak A. Effectiveness of Probiotic, Prebiotic, and Synbiotic Therapies in Reducing Postoperative Complications: A Systematic Review and Network Meta-analysis. Clin. Infect. Dis. 2017; 64 (Suppl. 2): S.153–1606. DOI: 10.1093/cid/cix114. PMID: 28475793
66. Villéger R., Lopès A., Carrier G., Veziant J., Billard E., Barnich N., Gagnière J., Vazeille E., Bonnet M. Intestinal Microbiota: A Novel Target to Improve Anti-Tumor Treatment? Int. J. Mol. Sci. 2019; 20 (18): E4584. DOI: 10.3390/ijms20184584. PMID: 31533218
67. Ruppé É., Lisboa T., Barbier F. The gut microbiota of critically ill patients: first steps in an unexplored world. Int. Care Med. 2018; 44 (9): 1561–1564. DOI: 10.1007/s00134-018-5309-3.
68. Beloborodova N.V. Integration of Metabolism in Man and His Microbiome in Critical Conditions. Obshchaya Reanimatologiya=General Reanimatology. 2012; 8 (4): 42. (In Russ.) DOI: 10.15360/1813-9779- 2012-4-42
69. Ilinskaya O.N., Ulyanova V.V., Yarullina D.R., Gataullin I.G. Secretome of intestinal bacilli: A natural guard against pathologies. Front. Microbiol. 2017; 8: 1666. DOI: 10.3389/fmicb.2017.01666. PMID: 28919884
70. Wilson I.D., Nicholson J.K. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Trans. Res. 2017; 179: 204–222. DOI: 10.1016/j.trsl.2016.08.002. PMID: 27591027
71. Oleskin A.V., Shenderov B.A. Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota. Microb. Ecol. Health Dis. 2016; 27: 30971. DOI: 10.3402/ mehd.v27.30971.
72. Schroeder B.O, Bäckhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 2016; 22 (10): 1079–1089. DOI: 10.1038/nm.4185. PMID: 27711063
73. Zhou C.B., Fang J.Y. The regulation of host cellular and gut microbial metabolism in the development and prevention of colorectal cancer. Crit. Rev. Microbiol. 2018; 44 (4): 436. DOI: 10.1080/1040841X.2018.1425671.
74. Omotayo O. Erejuwa, Siti A. Sulaiman, Mohd S. Ab Wahab Modulation of Gut Microbiota in the Management of Metabolic Disorders: The Prospects and Challenges Int J Mol Sci. 2014; 15(3): 4158–4188. DOI: 10.3390/ijms15034158. PMID: 24608927
75. Beloborodova N.V., Chernevskaya E.A., Pautova A.K., Bedova A.Y., Sergeev A.A. Altered serum profile of aromatic metabolites reflects the biodiversity reduction of gut microbiota in critically ill patients. Crit. Care. 2018; 22 (Suppl 1): 82. DOI: 10.1186/s13054-018-1973-5.
76. Bhalodi A.A., van Engelen T.S.R., Virk H.S., Wiersinga W.J. Impact of antimicrobial therapy on the gut microbiome. J. Antimicrob. Chemother. 2019; 74 (Supplement_1): i6–i15. DOI: 10.1093/jac/dky530. PMID: 30690540
77. Lamarche D., Johnstone J., Zytaruk N., Clarke F., Hand L., Loukov D., Szamosi J.C., Rossi L., Schenck L.P., Verschoor C.P., McDonald E8., Meade M.O., Marshall J.C., Bowdish D.M.E., Karachi T., Heels-Ansdell D., Cook D.J., Surette M.G.; PROSPECT Investigators; Canadian Critical Care Trials Group; Canadian Critical Care Translational Biology Group. Microbial dysbiosis and mortality during mechanical ventilation: a prospective observational study. Respir Res. 2018; 19 (1): 245. DOI: 10.1186/s12931-018-0950-5. PMID: 30526610 7
78. Xu R., Tan C., Zhu J., Zeng X., Gao X., Wu Q., Chen Q., Wang H., Zhou H., He Y., Pan S., Yin J. Dysbiosis of the intestinal microbiota in neurocritically ill patients and the risk for death. Crit. Care. 2019; 23 (1): 195. DOI: 10.1186/s13054-019-2488-4.
79. Yin L., Wan Y.D., Pan X.T., Zhou C.Y., Lin N., Ma C.T., Yao J., Su Z., Wan C., Yu Y.W., Zhu R.X. Association Between Gut Bacterial Diversity and Mortality in Septic Shock Patients: A Cohort Study. Med. Sci. Monit. 2019; 25: 7376–7382. DOI: 10.12659/MSM.916808.
80. Davison J.M., Wischmeyer P.E. Probiotic and symbiotic therapy in the critically ill: State of the art. Nutrition. 2019; 59: 29–36. DOI: 10.1016/j.nut.2018.07.017. PMID: 30415160
81. Beloborodova N., Moroz V., Osipov A., Bedova A., Sarshor Y., Vlasenko A., Olenin A. Tyrosine metabolism disorder and the potential capability of anaerobic microbiota to decrease the value of aromatic metabolites in critically ill patients. Crit. Care. 2014; 18 (Suppl 2): P60. DOI: 10.1186/cc14063 http: //ccforum.com/content/18/S2/P60
82. Moroz V.V., Beloborodova N.V., Osipov A.A., Vlasenko A.V., Bedova A.Y., Pautova A.K. Phenylcarboxylic Acids in The Assessment of The Severity of Patient Condition and The Efficiency of Intensive Treatment in Critical Care Medicine. Obshchaya Reanimatologiya=General Reanimatology. 2016; 12(4): 37–48. [In Russ.]. DOI: 10.15360/1813-9779-2016-4-37-48
83. Besselink M.G., van Santvoort H.C., Buskens E., Boermeester M.A., van Goor H., Timmerman H.M., Nieuwenhuijs V.B., Bollen T.L., van Ramshorst B., Witteman B.J., Rosman C., Ploeg R.J., Brink M.A., Schaapherder A.F., Dejong C.H., Wahab P.J., van Laarhoven C.J., van der Harst E., van Eijck C.H., Cuesta M.A., Akkermans L.M., Gooszen H.G.; Dutch Acute Pancreatitis Study Group. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trail. Lancet. 2008; 371 (9613): 651–659. DOI: 10.1016/S0140- 6736(08)60207-X. PMID: 18279948
84. Morrow L.E., Wischmeyer P. Blurred Lines: Dysbiosis and Probiotics in the ICU. Chest. 2017; 151 (2): 492–499. DOI: 10.1016/j.chest. 2016.10.006. PMID: 27771302
85. Manzanares W., Lemieux M., Langlois P.L., Wischmeyer P.E. Probiotic and synbiotic therapy in critical illness: A systematic review and meta-analysis. Crit. Care. 2016; 19: 262. DOI: 10.1186/s13054-016- 1434-y. PMID: 27538711
86. Bongaerts G.P., Severijnen R.S. A reassessment of the PROPATRIA study and its implications for probiotic therapy. Nat. Biotechnol. 2016; 34 (1): 55–63. DOI: 10.1038/nbt.3436.
87. Mukherjee S., Joardar N., Sengupta S., Babu S.P.S. Gut microbes as future therapeutics in treating inflammatory and infectious diseases: Lessons from recent findings. J. Nutr. Biochem. 2018; 61: 111. DOI: 10.1016/j.jnutbio.2018.07.010. PMID: 30196243
88. Shenderov B.A., Tkachenko E.I., Lazebnik L.B., Ardatskaya M.D., Sinitsa A.V., Zakharchenko M.M. Metabiotics - a new technology for the prevention and treatment of diseases associated with microecological disorders in the human body. Eksper. i klin. gastroenterologiya. 2018; 151 (3): 83–92 [In Russ.]
89. Espin J.C., Gonzalez-Sarrias A., Tomas-Barberan F.A. The gut microbiota: A key factor in the therapeutic effects of (poly) phenols. Biochem. Pharmacol. 2017; 139: 82–93. DOI: 10.1016/j.bcp.2017.04.033. PMID: 28483461
90. Spreadborough P., Lort S., Pasquali S., Popplewell M., Owen A., Kreis I., Tucker O., Vohra R.S. and on behalf of the Preventing Postoperative Pneumonia Study Group and the West Midlands Research Collaborative. A systematic review and meta-analysis of perioperative oral decontamination in patients undergoing major elective surgery. Perioper. Med. 2016; 5: 6. DOI: 10.1186/s13741-016-0030-7.
91. Resino E., San-Juan R., Aguado J.M. Selective intestinal decontamination for the prevention of early bacterial infections after liver transplantation. World J. Gastroenterol. 2016; 22 (26): 5950–5957. DOI: 10.3748/wjg.v22.i26.5950. PMID: 27468189
92. Zandstra D.F., Van Saene H.K. Selective decontamination of the digestive tract as infection prevention in the critically ill. A level 1 evidence-based strategy. Minerva Anestesiol. 2011; 77 (2): 212–219. PMID: 21102395
93. Sánchez-Ramírez C., Hípola-Escalada S., Cabrera-Santana M., Hernández-Viera M.A., Caipe-Balcázar L., Saavedra P., ArtilesCampelo F., Sangil-Monroy N., Lübbe-Vázquez C.F., Ruiz-Santana S. Long-term use of selective digestive decontamination in an ICU highly endemic for bacterial resistance. Critical Care. 2018; 22: 141 DOI: 10.1186/s13054-018-2057-2
94. Price R., MacLennan G., Glen J., SuDDICU Collaboration. Selective digestive or oropharyngeal decontamination and topical oropharyngeal chlorhexidine for prevention of death in general intensive care: systematic review and network meta-analysis. BMJ. 2014; 348: g2197. DOI: 10.1136/bmj.g2197. PMID: 24687313
95. Buelow E., Bello González T.D.J., Fuentes S., de Steenhuijsen Piters W.A.A., Lahti L., Bayjanov J.R., Majoor E.A.M., Braat J.C., van Mourik M.S.M., Oostdijk E.A.N., Willems R.J.L., Bonten M.J.M., van Passel M.W.J., Smidt H., van Schaik W. Comparative gut microbiota and resistome profiling of intensive care patients receiving selective digestive tract decontamination and healthy subjects. Microbiome. 2017; 5 (1): 88. DOI: 10.1186/s40168-017-0309-z. PMID: 28803549
96. van Nood E., Speelman P., Nieuwdorp M., Keller J. Fecal microbiota transplantation: Facts and controversies. Curr. Opin. Gastroenterol. 2014; 30 (1): 34–39. DOI: 10.1097/MOG.0000000000000024. PMID: 24241245
97. Han S., Shannahan S., Pellish R. Fecal microbiota transplant: Treatment options for Clostridium difficile infection in the intensive care unit. J. Intensive Care Med. 2015; 31 (9): 577–586. DOI: 10.1177/ 0885066615594344. PMID: 26141116
98. McClave S.A., Patel J., Bhutiani N. Should fecal microbial transplantation be used in the ICU? Curr. Opin. Crit. Care. 2018; 24 (2): 105–111. DOI: 10.1097/MCC.0000000000000489. PMID: 29432297
99. FDA In Brief: Important Safety Alert Regarding Use of Fecal Microbiota for Transplantation and Risk of Serious Adverse Reactions Due to Transmission of Multi-Drug Resistant Organisms. 13 June 2019. Available from: https: //www.fda.gov/news-events/fda-brief/fdabrief-fda-warns-about-potential-risk-serious-infections-causedmulti-drug-resistant-organisms
100. Beloborodova N., Sarshor Y. The first experience of targeted antibiotics for the regulation of the metabolic activity of the gut microbiota (MAGM) in critically ill patients with pneumonia or abdominal infection. Intensive Care Med. Experimental. 2018; 6 (Suppl 2): 0399. DOI: 10.1186/s40635-018-0201-6.
101. Beloborodova N.V., Moroz V.V., Bedova A.Yu. On the role of aromatic microbial metabolites. Pat. fiziologiya i eksperimentalnaya terapiya. 2018; 62 (1): 97–108 [In Russ.]. DOI: 10.25557/0031-2991.2018.01.97- 108.
102. Beloborodova N.V., Olenin A.Yu., Pautova A.K. Metabolomic findings in sepsis as a damage of host-microbial metabolism integration. J. Crit. Care. 2018; 43: 246. DOI: 10.1016/j.jcrc.2017.09.014. PMID: 28942199
103. Chernevskaya E., Beloborodova N. Microbiota-Oriented Diagnostics and Therapy in Sepsis: Utopia or Necessity? [Open access peer-reviewed chapter — Online First]. In: Sepsis. London, United Kingdom: IntechOpen; 2019. DOI: 10.5772/intechopen.89187.
104. Beloborodova N.V., Grechko A.V., Olenin A.Yu. Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology. [Online First]. In: Metabolomics — New Insights into Biology and Medicine. London, United Kingdom: IntechOpen; 2019: 21. ISBN: 978-1-78985-127-4. DOI: 10.5772/intechopen.87176
Review
For citations:
Beloborodova N.V. Metabolism of Microbiota in Critical Illness (Review and Postulates). General Reanimatology. 2019;15(6):62-79. https://doi.org/10.15360/1813-9779-2019-6-62-79