Respiratory Support During Pulmonary Artery Thromboembolia (Review)
https://doi.org/10.15360/1813-9779-2020-1-73-85
Abstract
Pulmonary artery thromboembolia (PATE) is not a clinical entity as such, but a complication of different diseases and conditions leading to deep thrombosis in the low tension circulation system, right cardiac chambers or causing local thrombosis in the pulmonary artery system. PATE is characterized by complex pathogenesis of respiratory failure of varying severity, which makes it difficult to choose a respiratory support technique.
Purpose of the overview: to show advantages of different respiratory support techniques and prospects of high-flux oxygen therapy with regard to PATE pathophysiology.
82 sources were selected based on the principle of combining clinical and experimental data from papers published over the recent 5 years and earlier that are still relevant for medical practice.
The overview presents the structure of main causes and prevalence of PATE and considers thrombogenesis stages and predominant manifestations of respiratory failure during PATE occurring due to inconsistency be
tween pulmonary ventilation and perfusion. Review discusses five methods of respiratory therapy in PATE patients: low-flux and high-flux oxygen therapy, non-invasive and invasive artificial lung ventilation, extracorporeal blood oxygenation. Finally, the paper shows the efficacy and limitations of these methods.
Conclusion. High-flux oxygen therapy seems to be the most effective and promising technique in PATE patients thanks to absence of adverse cardiohemodynamic consequences, subjective comfort for patients, and relation to minimal risks of secondary infectious complications.
Nevertheless, the clinical experience accumulated is insufficient to make an absolute choice of one particular technique for respiratory support during PATE. It is necessary to continue investigating the clinical efficacy of high-flux oxygen therapy in the specific population of patients who experienced PATE.
About the Authors
D. A. OstapchenkoRussian Federation
Dmitry A. Ostapchenko
25 Petrovka Str., Bldg. 2, 107031 Moscow
8 Leninskiy Av., 119049 Moscow
A. I. Gutnikov
Russian Federation
Alexey I. Gutnikov
8 Leninskiy Av., 119049 Moscow
D. V. Rubanova
Russian Federation
Dariya V. Rubanova
8 Leninskiy Av., 119049 Moscow
A. A. Losev
Russian Federation
Artem A. Losev
8 Leninskiy Av., 119049 Moscow
References
1. Eremenko A.A., Polyakova Р.V., Vyzhigina M.A. Influence of Noninvasive Respiratory Support Techniques on Gas Exchange in Cardiac Surgical Patients Suffering from Post-Operative Respiratory Failure. Obshchaya Reanimatologiya = General Reanimatology. 2019; 15 (4): 21–31. [In Russ.] DOI:10.15360/1813-9779-2019-1-21-31
2. Kapraľová P., Žitva P., Mišíková S., Kočan L., Firment P. The use of continuous Flow Ventilatory Support for Hypercapnic Respiratory Failure. Obshchaya Reanimatologiya = General Reanimatology. 2019; 15 (5): 23–33. [In Russ.] DOI:10.15360/1813-9779-2019-5-23-33
3. Dolgikh V.T., Govorova N.V., Orlov Y.P., Korpacheva O.V., Dorovskikh G.N., Ershov A.V. Pathophysiological Aspects of Hyperoxia in Anesthesiologist-Reanimatologist's Practice. Obshchaya Reanimatologiya = General Reanimatology. 2017; 13 (3): 83–93. [In Russ.] DOI:10.15360/1813-97792017-3-83-93
4. Parkhomenko A.N., Irkin O.I., Lutaj Ya.M. Pulmonary embolism: algorithms for diagnosis and treatment. Medicina neotlozhnyh sostoyanij. 2011; 3 (34): 10–24 [In Russ.]
5. Shilov A.M., Melnik M.V., Sanodze I.D., Sirotina I.L. Pulmonary embolism: pathophysiology, clinic, diagnosis, treatment. Russkij meditsinskij zhurnal. 2003; 9 (4): 530–535 [In Russ.]
6. Dentali F., Ageno W., Pomero F., Fenoglio L., Squizzato A., Bonzini M. Time trends and case fatality rate of in-hospital treated pulmonary embolism during 11 years of observation in Northwestern Italy. Thromb Haemost 2016; 115: 399–405. DOI: 10.1160/TH15-02-0172. PMID: 26422774
7. Janata K. Mortality of patients with pulmonary embolism. Wien. Klin. Wschr.2002; 14: 766–772. PMID: 12416281
8. Lehnert P., Lange T., Moller C.H., Olsen P.S., Carlsen J. Acute pulmonary embolism in a national Danish cohort: increasing incidence and decreasing mortality. Thromb Haemost 2018; 118: 539–546. DOI: 10.1160/TH17-08-0531. PMID: 29536465
9. Nakamura M. Clinical characterises of acute pulmonary thromboembolism in Japan: results of a multiccnter registry in the Japanese Society of Pulmonary Embolism Research. Clin. Cardiol. 2001; 24: 132–138. DOI: 10.1002/clc.4960240207. PMID: 11214743
10. Ritchie J.E., Williams A.B., Gerard C., Hockey H. Evaluation of a humidified nasal high-flow oxygen system, using oxygraphy, capnography and measurement of upper airway pressures Anaesth Intensive Care. 2011; 39 (6): 1103–1110. DOI: 10.1177/0310057X1103900620. PMID: 22165366
11. Keller K., Hobohm L., Ebner M., Kresoja K.P., Munzel T., Konstantinides S.V., Lankeit M. Trends in thrombolytic treatment and outcomes of acute pulmonary embolism in Germany. Eur Heart J; Published online ahead of print 18 May 2019. DOI: 10.1093/eurheartj/ehz236. PMID: 31102407
12. Oger E. Incidence of venous thromboembolism: a community-based study in Western France. Thromb. Haemost. 2000; 83: 657–660. DOI: 10.1186/1471-2458-11-415
13. Moser K.M., Fedullo P.F., Little John J.K., Crawford R Frequent asymptomatic pulmonary embolism in patients with deep venous thrombosis. JAMA. 1994; 271: 223–225. PMID: 8277550
14. Stollberger C. Finsterer J., Lutz W., Stöberl C., Kroiss A., Valentin A., Slany J. Multivariate analisis – based prediction rule for pulmonary embolism. Thromb. Res. 2000; 97 (5): 267–273. DOI: 10.1016/s00493848(99)00180-2. PMID: 10709901
15. Dalen J.E. Pulmonary embolism: what have we learned since Virchow? Natural history, pathophysiology, and diagnosis. Chest. 2002 Oct; 122 (4): 1440–1456. DOI: 10.1378/chest.122.4.1440. PMID: 12377877
16. Di N. M., Van E. N., Büller H.R. Deep vein thrombosis and pulmonary embolism. The Lancet 2016; 388 (10063): 3060–3073. DOI: 10.1016/S0140-6736(16)30514-1. PMID: 27375038
17. Wendelboe A.M., Raskob G.E. Global burden of thrombosis: epidemiologic aspects. Circ Res 2016; 118: 1340–1347. DOI: 10.1161/CIRCRESAHA.115.306841. PMID: 27126645
18. Alias S.,Lang I.M. Coagulation and the vessel wall in pulmonary embolism. Pulmonary Circulation. 2013; 3 (4): 728–738. DOI: 10.1086/674768. PMID: 25006391
19. Heit J.A., Mellon I.J., Lohse C.M. Incidence of venous thromboembolism in hospitalised patients vs community residents Mayo Clin. Proc. 2001; 76: 1102–1110. DOI: 10.4065/76.11.1102. PMID: 11702898
20. Hagen P.T.,Sholz D.G., Edwards W.D. Incidence and size of patent foramen ovale during the first 10 decades of Life an autopsy study of 965 normal hearts. Mayo Clin Proc. 1984; 59 (1): 17–20. DOI: 10.1016/S0025-6196(12)60336-X
21. Kasper W., Geibel A., Tiede N., Just H. Patent foramen ovale in patients with haemodynamically significant pulmonary embolism. Lancet. 1992 Sep 5; 340 (8819): 561–564. DOI: 10.1016/0140-6736(92)92102-l. PMID: 1355152
22. Estagnasié P., Djedaïni K., Le Bourdellès G., Coste F., Dreyfuss D. Atrial septal aneurysm plus a patent foramen ovale. A predisposing factor for paradoxical embolism and refractory hypoxemia during pulmonary embolism. Chest. 1996; 110 (3): 846–848. DOI: 10.1378/chest.110.3.846. PMID: 8797439
23. Owens III A. P., Mackman N. Tissue factor and thrombosis: the clot starts here. Thrombosis and Haemostasis. 2010; 104 (3): 432–439. DOI: 10.1160/TH09-11-0771. PMID: 2053991
24. Reitsma P.H., Versteeg H. H., Middeldorp S. Mechanistic view of risk factors for venous thromboembolism. Arteriosclerosis, Thrombosis, and Vascular Biology. 2012; 32 (3): 563–568. DOI: 10.1161/ATVBAHA.111.242818. PMID: 22345594
25. Snow V., Qaseem A., Barry P. et al. and the Joint American Academy of Family Physicians/American College of Physicians Panel on Deep Venous Thrombosis/Pulmonary Embolism. Management of Venous Thromboembolism: A Clinical Practice Guideline from the American College of Physicians and the American Academy of Family Physicians. Annals of Internal Medicine 2007; 146 (3): 204–210. DOI: 10.7326/0003-4819-146-3-200702060-00149. PMID: 17261857
26. Bobadilla R.A., García-Juárez J.A., Hong E., Castillo C., Amezcua J.L. Serotonergic receptors involved in the hemodynamic changes observed during pulmonary embolism. Proc West Pharmacol Soc 1991; 34: 439–442. PMID: 1788326
27. Shilov A.M., Melnik M.V., Sanodze I.D., Sirotina I.L. Thromboembolism of the branches of the pulmonary artery: pathophysiology, clinical features, diagnosis, treatment. RMJ. 2003; 9: 530 [In Russ.]
28. Elliott C.G. Pulmonary physiology during pulmonary embolism. Chest 1992; 101 (Suppl): 163–171. DOI: 10.1378/chest.101.4_supplement.163s. PMID: 1555481
29. Yamamoto T: Management of patients with high-risk pulmonary embolism: a narrative review J Intensive Care. 2018; 6: 16. DOI: 10.1186/s40560-018-0286-8. PMID: 29511564
30. Stratmann G., Gregory G.A. Neurogenic and humoral vasoconstriction in acute pulmonary thromboembolism. Anesth Analg. 2003; 97: 341–354. DOI: 10.1213/01.ane.0000068983.18131.f0. PMID: 12873915
31. Smulders Y.M. Contribution of pulmonary vasoconstriction to hemodynamic instability after acute pulmonary embolism. Implications for treatment? Neth J Med 2001; 58: 241–247. DOI: 10.1016/s03002977(01)00117-6. PMID: 11395221
32. Yan C., Wang X., Su H.,Ying K. Recent Progress in Research on the Pathogenesis of Pulmonary Thromboembolism: An Old Story with New Perspectives. BioMed Research International Volume 2017, Article ID 6516791, 10 pages. DOI: 10.1155/2017/6516791. PMID: 28484717
33. Itti E., Nguyen S., Robin F., Desarnaud S., Rosso J., Harf A., Meignan M. Distribution of ventilation/ perfusion ratios in pulmonary embolism: an adjunct to the interpretation of ventilation/perfusion lung scans. J Nucl Med 2002; 43: 1596–1602. PMID: 12468507
34. Kostadima E., Zakynthinos E. Pulmonary Embolism: Pathophysiology, Diagnosis, Treatment. Hellenic J Cardiol 48: 94–107, 2007. PMID: 17489347
35. Crapo R.O., Jensen R.L., Wanger J.S. Single-breath carbon monoxide diffusing capacity. Clin Chest Med 2001; 22: 637–649. DOI: 10.1016/s0272-5231(05)70057-5. PMID: 11787656
36. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): The Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC) European Heart Journal, ehz405. DOI: 10.1093/eurheartj/ehz405. PMID: 31504429
37. Wood K.E: Major pulmonary embolism: review of a pathophysiologic approach to the golden hour of hemodynamically significant pulmonary embolism. Chest 2002; 121: 877–905. DOI: 10.1378/chest.121.3.877. PMID: 11888976
38. Liew J., Stevens J., Slatore C. Refractory Hypoxemia in a Patient with Submassive Pulmonary Embolism and an Intracardiac Shunt: A Case Report and Review of the Literature Perm J. 2018; 22: 17–061. DOI: 10.7812/TPP/17-061. PMID: 29616915
39. Konstantinides S., Geibel A., Kasper W., Olschewski M., Blümel L., Just H. Patent foramen ovale is an important predictor of adverse outcome in patients with major pulmonary embolism. Circulation. 1998; 97 (19): 1946–1951. DOI: 10.1161/01.cir.97.19.1946. PMID: 9609088
40. Vlahakes G.J., Turley K., Hoffman J.I. The pathophysiology of failure in acute right ventricular hypertension: hemodynamic and biochemical correlations. Circulation. 1981; 63: 87–95. DOI: 10.1161/01.cir.63.1.87
41. Goldhaber SZ, Visani L, De Rosa M: Acute pulmonary embolism: clinical outcomes in the International Cooperative Pulmonary Embolism Registry (ICOPER). Lancet 1999; 353: 1386–1389. DOI: 10.1016/s0140-6736(98)07534-5. PMID: 10227218
42. Goldhaber S.Z: Echocardiography in the management of pulmonary embolism. Ann Intern Med 2002; 136: 691–700. DOI: 10.7326/00034819-136-9-200205070-00012. PMID: 11992305
43. Faverio P., De Giacomi F., Sardella L. Management of acute respiratory failure in interstitial lung diseases: overview and clinical insights BMC Pulm Med. 2018; 18: 70. DOI: 10.1186/s12890-018-0643-3. PMID: 29764401
44. Guidelines on diagnosis and management of acute pulmonary embolism. European Society of Cardiology. Europ. Heart J. 2000; 21: 13011336. DOI: 10.1053/euhj.2000.2250. PMID: 10952823
45. Tapson V.F. Acute Pulmonary Embolism. New England Journal of Medicine 2008; 358: 1037-1052. DOI: 10.1056/NEJMra072753. PMID: 18322285
46. Crimi C., Noto A., Princi P.,Esquinas A., Nava S.A. European survey of noninvasive ventilation practices. Eur Respir J. 2010; 36 (2): 362–369. DOI: 10.1183/09031936.00123509. PMID: 20075052
47. Frat J.-P., Brugiere B., Ragot S., Chatellier D., Veinstein A., Goudet V., Coudroy R., Petitpas F., Robert R., Thille A.W., Girault C. Sequential application of oxygen therapy via high-flow nasal cannula and noninvasive ventilation in acute respiratory failure: an observational pilot study. Respir Care. 2015; 60: 170–178. DOI: 10.4187/respcare.03075. PMID: 25294935
48. Vlasenko A.V., Moroz V. V., Yakovlev V. N., Alekseev V.G. Differentiated treatment of acute respiratory distress syndrome. Novosti anesteziologii i reanimatologii. 2012; 4: 23–33. [In Russ.].
49. Kassil V.L., Zolotokrylina E.S. Acute Respiratory Distress Syndrome. М.: Meditsina; 2006: 294 p. [In Russ.].
50. O’Driscoll, B.R., Howard L.S., Davison A.G. BTS guideline for emergency oxygen use in adults. 2008; 63: 61–68. DOI: 10.1136/thx.2008.102947. PMID: 18838559
51. Richard B., Wettstein R.R., David C., Shelledy T., Peters J.I. Delivered Oxygen Concentrations Using Low-Flow and High-Flow Nasal Cannulas. Respir Care. 2005; 50: 604–609. PMID: 15871753
52. Guarracino F., Cabrini L., Ferro B., Landoni G., Lembo R., Mucchetti M., Bocchino S., Zangrillo A., Ambrosino N. Noninvasive ventilation practice in cardiac surgery patients: insights from a European survey. J Cardiothorac Vasc Anesth. 2013; 27 (5): e63–e65. DOI: 10.1053/j.jvca.2013.04.005. PMID: 24054201
53. Ozsancak Ugurlu A., Sidhom S.S., Khodabandeh A., Ieong M., Mohr C., Lin D.Y., Buchwald I., Bahhady I., Wengryn J., Maheshwari V., Hill N.S. Use and outcomes of noninvasive positive pressure ventilation in acute care hospitals in Massachusetts. Chest. 2014; 145 (5): 964–971. DOI: 10.1378/chest.13-1707. PMID: 24480997
54. Messika J., Goutorbe P., Hajage D., Ricard J.-D. Severe pulmonary embolism managed with high-flow nasal cannula oxygen therapy. Eur J Emerg Med. 2017; 24: 230–232. DOI: 10.1097/MEJ.0000000000000420. PMID: 28452810
55. Frat J.P., Coudroy R. High-flow nasal oxygen therapy and non-invasive ventilation in the management of acute hypoxemic respiratory failure. Ann Transl Med. 2017; 5: 297. DOI: 10.21037/atm.2017.06.52
56. Russotto V., Cortegiani A., Raineri S.M., Gregoretti C., Giarratano A. Respiratory support techniques to avoid desaturation in critically ill patients requiring endotracheal intubation: a systematic review and metaanalysis. J Crit Care. 2017; 41: 98–106. DOI: 10.1016/j.jcrc.2017.05.003
57. Demoule A., Girou E., Richard J.C., Taille S., Brochard L. Benefits and risks of success or failure of noninvasive ventilation. Intensive Care Med. 2006; 32 (11): 1756. DOI: 10.1007/s00134-006-0324-1. PMID: 17019559
58. Hess D.R. Noninvasive positive-pressure ventilation and ventilatorassociated pneumonia. Respir Care. 2005; 50 (7): 924. PMID: 15972113
59. Girou E., Schortgen F., Delclaux C., Brun-Buisson C., Blot F., Lefort Y., Lemaire F., Brochard L. Association of noninvasive ventilation with nosocomial infections and survival in critically ill patients. JAMA. 2000; 284 (18): 2361. DOI: 10.1001/jama.284.18.2361. PMID: 11066187
60. Tokoyama T., Tsushima K., Yamamoto H., Koizumi T., Kubo K. Potential benefits of early continuous positive pressure ventilation in patients with rapidly progressive interstitial pneumonia. Respirol. Carlton Vic. 2012; 17: 315–321. DOI: 10.1186/s12890-018-0643-3. PMID: 29764401
61. Vlasenko A.V., Koryakin A.G., Evdokimov E.A. High-flow oxygen therapy in the treatment of acute respiratory failure of various origins: opportunities and prospects.Zhurnal Meditsinskij alfavit. 2017; 3 (326): 16–26. [In Russ.].
62. Zilber A.P. Essays of respiratory medicine. Textbook Moscow.: Publishing house «Medpress-info», 2007: 612–631. [In Russ.].
63. Bĕlohlávek J, Dytrych V., Linhart A. Pulmonary embolism, part II: Management Exp Clin Cardiol. 2013; 18 (2): 139–147. PMID: 23940439
64. Evdokimov E.A., Moroz V.V., Karpun N.A., Vlasenko A.V., Nikiforov Yu.V., Procenko D.N., Khoroshilov S.E., Kichin V.V. New technologies for the treatment of severe concomitant injury. Neotlozhnaya meditsina. 2013; 2: 26–33. [In Russ.].
65. Kjaergaard B., Rasmussen B.S., de Neergaard S., Rasmussen L.H., Kristensen S.R. Extracorporeal cardiopulmonary support may be an efficient rescue of patients after massive pulmonary embolism. An experimental porcine study. Thromb. Res. 2012; 129 (4): e147–e151. DOI: 10.1016/j.thromres.2012.01.007. PMID: 22316657
66. Delnoij T.S., Accord R.E., Weerwind P.W., Donker D.W. Atrial transeptal thrombus in massive pulmonary embolismsalvaged by prolonged extracorporeal life support after thromboembolectomy. A bridge to right sided cardiovascular adaptation. Acute Card. Care. 2012; 14 (4): 138–140. DOI: 10.3109/17482941.2012.741247. PMID: 23215749
67. Leick J., Liebetrau C., Szardien S., Willmer M. Percutaneous circulatory support in a patient with cardiac arrest due to acute pulmonary embolism. Clin. Res. Cardiol. 2012; 101 (12): 1017–1020. DOI: 10.1007/s00392-012-0481-x. PMID: 22688275
68. Taniguchi S., Fukuda W., Fukuda I., Watanabe K. Outcome of pul monary embolectomy for acute pulmonary thromboemolism: analysis of 32 patients from a multicentre registry in Japan. Interactive Cardiovascucalar Thoracical Surgery 2012; 14 (1): 64–67. DOI: 10.1093/icvts/ivr018. PMID: 22108928
69. Hayami H., Mizutani K., Shioda M., Takaki S., Maejima H., Ueno K., Yamaguchi Y., Kariya T., Gotoh T. Use of high-flow nasal canulae: effect on alveolar pressure and its limitation. Crit Care. 2013; 17 (Suppl 2). DOI: 10.1186/cc12029
70. Messika J., Goutorbe P., Hajage D., Ricard J.-D. Severe pulmonary embolism managed with high-flow nasal cannula oxygen therapy. Eur J Emerg Med. 2017; 24: 230–232. DOI: 10.1097/MEJ.0000000000000420. PMID: 28452810
71. Ritchie J.E., Williams A.B., Gerard C., Hockey H. Evaluation of a humidified nasal high-flow oxygen system, using oxygraphy, capnography and measurement of upper airway pressures Anaesth Intensive Care. 2011; 39 (6): 1103–1110. DOI: 10.1177/0310057X1103900620. PMID: 22165366
72. Nishimura M. High-flow nasal cannula oxygen therapy in adults: physiological benefits, indication, clinical benefits, and adverse effects. Respir Care. 2016; 61: 529–541. DOI: 10.4187/respcare.04577. PMID: 27016353
73. Zhao H., Wang H., Sun F., Lyu S., An Y. High-flow nasal cannula oxygen therapy is superior to conventional oxygen therapy but not to noninvasive mechanical ventilation on intubation rate: a systematic review and meta-analysis. Crit Care. 2017; 21 (1): 184. Published 2017 Jul 12. DOI: 10.1186/s13054-017-1760-8. PMID: 28701227
74. Nishimura M. High-flow nasal cannula oxygen therapy in adults. J Intensive Care. 2015; 3: 15. DOI: 10.1186/s40560-015-0084-5. PMID: 25866645
75. Shaffer T.H. Research in high flow therapy: mechanisms of positive airway pressure. Br J Anaesth. 2009; 103: 886–890.
76. Schwabbauer N., Berg B., Blumenstock G., Haap M., Hetzel J., Riessen R. Nasal high-flow oxygen therapy in patients with hypoxic respiratory failure: effect on functional and subjective respiratory parameters compared to conventional oxygen therapy and non-invasive ventilation (NIV) Bmc Anesth. 2014; 14: 66. DOI: 10.1186/1471-225314-66. PMID: 25110463
77. Sotello D., Rivas M., Mulkey Z., Nugent K. High-flow nasal cannula oxygen in adult patients: a narrative review. Am J Med Sci. 2015; 349: 179–185. DOI: 10.1097/MAJ.0000000000000345. PMID: 25285514
78. Spoletini G., Alotaibi M., Blasi F., Hill N.S. Heated humidified highflow nasal oxygen in adults: mechanisms of action and clinical implications. Chest. 2015; 148: 253–261. DOI: 10.1378/chest.14-2871. PMID: 25742321
79. Messika J., Goutorbe P., Hajage D., Ricard J-D. Severe pulmonary embolism managed with high-flow nasal cannula oxygen therapy. European Journal of Emergency Medicine: June 2017; 24 (3): 230–232. DOI: 10.1097/MEJ.0000000000000420. PMID: 28452810
80. Schmidt G.A. Pulmonic embolic disorders: Thrombus, Air and Fat, in Hall J.B., Schmidt G.A., Wood LDH (eds): Principles of Critical Care. McGraw-Hill 1992: 1476–1492.
81. Jeong J.H., Kim D.H., Kim S.C., Kang C., Lee S.H., Kang T-S, Lee S.B., Jung S.M., Kim D.S. Changes in arterial blood gases after use of highflow nasal cannula therapy in the ED. Am J Emerg Med. 2015; 33: 1344–1349. DOI: 10.1016/j.ajem.2015.07.060. PMID: 26319192
82. Lacroix G., Pons F., D’Aranda E., Legodec J. Romanat P.E., Goutorbe P. High-flow oxygen, a therapeutic bridge while awaiting thrombolysis in pulmonaryembolism? Am J Emerg Med 2013; 31: 463.e1–463.e2. DOI: 10.1016/j.ajem.2012.08.030. PMID: 23159426
Review
For citations:
Ostapchenko D.A., Gutnikov A.I., Rubanova D.V., Losev A.A. Respiratory Support During Pulmonary Artery Thromboembolia (Review). General Reanimatology. 2020;16(1):73-85. https://doi.org/10.15360/1813-9779-2020-1-73-85