Preview

General Reanimatology

Advanced search

Hyperbaric Oxygen Therapy in Patients with COVID-19

https://doi.org/10.15360/1813-9779-2020-6-4-18

Full Text:

Abstract

The aim of the study is to evaluate the efficacy of hyperbaric oxygen therapy and its effect on oxidative stress and apoptosis in patients with new coronavirus infection COVID-19.

Materials and methods. 90 patients diagnosed with new coronavirus infection caused by SARS-CoV-2 virus were examined. Hyperbaric oxygen therapy sessions were conducted in 57 patients (38 in severe condition (CT 3-4), 19 in moderate condition (CT 1-2)). The procedures were performed in 1.4-1.6 ATA mode for 40 minutes, 247 sessions in total were performed. The effect of hyperbaric oxygenation was assessed by measuring the level of oxygen saturation, the severity of oxidative stress and apoptosis of blood lymphocytes.

Results. In all examined patients with new coronavirus infection caused by SARS-CoV-2, positive changes such as dyspnea reduction and improvement of general well-being were registered after hyperbaric oxygen therapy sessions. The level of oxygen saturation after the end of the hyperbaric oxygen therapy course was 95.0±1.6% (before the course — 91.3±5.9%), which allowed to return almost all patients to spontaneous respiration without the need for further oxygenation therapy. Hyperbaric oxygen therapy did not reduce the total antioxidant activity, however, it was associated with a decrease in the blood malone dialdehyde from 4.34±0.52 pmol/l to 3.98±0.48 pmol/l and a decrease in open circuit potential of platinum electrode from -22.78±24.58 mV to -37.69±17.4 mV. Besides, the positive effect of hyperbaric oxygen therapy was manifested in normalization of blood cell apoptosis.

Conclusion. Hyperbaric oxygen therapy in patients with new coronavirus infection caused by the SARS-CoV-2 virus is an effective treatment method with multiple effects resulting in improvement of subjective indicators of the patients' condition, increase of hemoglobin oxygen saturation, decrease of lipid peroxidation intensity, activation of antioxidant system, restoration of pro- and antioxidant balance and apoptosis normalization.

About the Authors

S. S. Petrikov
N.V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Sergey S. Petrikov

3 Bolshaya Sukharevskaya Square, 129090 Moscow



A. K. Evseev
N.V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Anatoly K. Evseev

3 Bolshaya Sukharevskaya Square, 129090 Moscow



O. A. Levina
N.V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Olga A. Levina

3 Bolshaya Sukharevskaya Square, 129090 Moscow



A. K. Shabanov
N.V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Aslan K. Shabanov

3 Bolshaya Sukharevskaya Square, 129090 Moscow



V. V. Kulabukhov
N.V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Vladimir V. Kulabukhov

3 Bolshaya Sukharevskaya Square, 129090 Moscow



N. Yu. Kutrovskaya
N.V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Natalia Yu. Kutrovskaya

3 Bolshaya Sukharevskaya Square, 129090 Moscow



N. V. Borovkova
N.V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Natalia V. Borovkova

3 Bolshaya Sukharevskaya Square, 129090 Moscow



Е. V. Klychnikova
N.V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Elena V. Klychnikova

3 Bolshaya Sukharevskaya Square, 129090 Moscow



I. V. Goroncharovskaya
N.V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Irina V. Goroncharovskaya

3 Bolshaya Sukharevskaya Square, 129090 Moscow



E. V. Tazina
N.V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Elizaveta V. Tazina

3 Bolshaya Sukharevskaya Square, 129090 Moscow



K. А. Popugaev
N.V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Konstantin A. Popugaev

3 Bolshaya Sukharevskaya Square, 129090 Moscow



D. A. Kosolapov
N.V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Denis A. Kosolapov

3 Bolshaya Sukharevskaya Square, 129090 Moscow



D. S. Slobodeniuk
N.V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Daria S. Slobodeniuk

3 Bolshaya Sukharevskaya Square, 129090 Moscow



References

1. Guan W., Ni Z., Hu Yu, Liang W., Ou C., He J., Liu L., Shan H., Lei C., Hui D.S.C., Du B., Li L., Zeng G., Yuen K.-Y., Chen R., Tang C., Wang T., Chen P, Xiang J., Li S., Wang Jin-lin, LiangZ., Peng Y., Wei L., Liu Y., Hu Ya-hua, Peng P., Wang Jian-ming, Liu J., Chen Z., Li G., Zheng Z., Qiu S., Luo J., Ye C., Zhu S., Zhong N. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020; 382 (18): 1708-1720. DOI: 10.1056/NEJMoa2002032. PMID: 32109013

2. Joly B.S., Siguret V., Veyradier A. Understanding pathophysiology of hemostasis disorders in critically ill patients with COVID-19. Intensive Care Med. 2020. DOI: 10.1007/s00134-020-06088-1. PMID: 32415314

3. Bikdeli B., Madhavan M.V, Jimenez D., Chuich T., Dreyfus I., Driggin E., Der Nigoghossian C., Ageno W., Madjid M., Guo Y., Tang L.V., Hu Y., Giri J., Cushman M., Quterte I., Dimakakos E.P., Gibson C.M., Lippi G., Favaloro E.J., Fareed J., Caprini J.A., Tafur A.J., Burton J.R., Francese D.P., Wang E.Y., Falanga A., McLintock C., Hunt B.J., Spyropoulos A.C., Barnes G.D., Eikelboom J.W., Weinberg I., Schulman S., Carrier M., Piazza G., Beckman J.A., Steg P.G., Stone G.W., Rosenkranz S., Goldhaber S.Z., Parikh S.A., Monreal M., Krumholz H.M., Konstantinides S.V., Weitz J.I., Lip G.Y.H. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up. J. Am. Coll. Cardiol. 2020; 75 (23): 2950-2973. DOI: 10.1016/j.jacc.2020.04.031. PMID: 32311448

4. Zhang W, Zhao Y, ZhangF, Wang Q., Li T, Liu Z., Wang J., Qin Y, Zhang X., Yan X., Zeng X., Zhang S. The use of anti-inflammatory drugsin the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin Immunol. 2020; 214: 108393. DOI: 10.1016/j.clim.2020.108393. PMID: 32222466

5. Tu W.J., Cao J., Yu L., Hu X., Lui Q. Clinicolaboratory study of 25 fatal cases of COVID-19 in Wuhan. Intensive Care Med. 2020; 46 (6): 1117-1120. DOI: 10.1007/s00134-020-06023-4. PMID: 32253448

6. Klok F.A., Kruip M.J.H.A., van der Meer N.J.M., Arbous M.S., Gommers D.A.M.P.J., Kant K.M., Kaptein F.H.J., van Paassen J., Stals M.A.M., Huisman M.V., Endeman H. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020; 191: 145-147. DOI: 10.1016/j.thromres.2020.04.013. PMID: 32291094

7. Helms J., Tacquard C., Severac F., Leonard-Lorant I., Ohana M., XaDe-labranche X., Merdji H., Clere-Jehl R., Schenck M., Gandet F.F., Fafi-Kremer S., Castelain V., Schneider F., Grunebaum L., Angltes-Cano E., Sattler L., Mertes P.M., Meziani F. High risk of thrombosis in patients in severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020; 46 (6): 1089-1098. DOI: 10.1007/s00134-020-06062-x. PMID: 32367170

8. Lodigiani C., Iapichino G., Carenzo L., Cecconi M., Ferrazzi P., Sebastian T, Kucher N., Studt J.D., Sacco C., Alexia B., Sandri M.T., Barco S. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020; 191: 9-14. DOI: 10.1016/j.thromres.2020.04.024. PMID: 32353746

9. Savilov P. On the possibilities of hyperbaric oxygen therapy in the treatment of SARS-CoV-2 infected patients. Znanstvena misel journal. 2020; 42 (2): 55-60. ISSN 3124-1123

10. Harch P.G. Hyperbaric oxygen treatment of novel coronavirus (COVID-19) respiratory failure. Med. Gas Res. 2020; 10 (2): 61-62. DOI: 10.4103/2045-9912.282177. PMID: 32541128

11. Grintsova A.A., Ladaria E.G., Boeva I.A., Dmitrienko V.V., Denisenko A.F. application of hyperbaric oxygenation in complex therapy of patients with professional COPD. Universitetskaya klinika. 2015; 11 (2): 52-54 [In Russ.].

12. Mathieu D. (ed.) Handbook of Hyperbaric Medicine. Dordrecht: Springer; 2006: 816. DOI: 10.1007/1-4020-4448-8. ISBN 978-1-40204448-9

13. Higuchi T., Oto T., Millar I.L., Levvey B.J., Williams T.J., Snell G.I. Preliminary Report of the Safety and Efficacy of Hyperbaric Oxygen Therapy for Specific Complications of Lung Transplantation. J. Heart Lung. Transplant. 2006; 25 (11): 1302-1309. DOI: 10.1016/j.healun.2006.08.006. PMID: 17097493

14. Shabunin A.V., Mitrokhin A. A., Vodneva M. M., Gauthier S. V., Poptsov V. N., Golovinsky S. V., Tsirulnikova O. M., Spirina E. A., Akhaladze D. G., Nechaev N. B., Latypov R. A. Hyperbaric oxygenation in organ transplantation (clinical experience on the example of lung transplantation). Vestnik transplantologii i iskusstvennykh organov. 2016; 18 (S): 71 [In Russ.]. DOI: 10.15825/1995-1191-2016-0

15. Qi Z., Gao C.J., Wang Y.B., Ma X.M., Zhao L., Liu F.J., Liu X.H., Sun X.J., Wang X.J. Effects of hyperbaric oxygen preconditioning on ischemiareperfusion inflammation and skin flap survival. Chin Med J (Engl). 2013; 126 (20): 3904-3909. DOI: 10.3760/cma.j.issn.0366-6999.20121165. PMID: 24157154

16. Muralidharan V., Christophi C. Hyperbaric oxygen therapy and liver transplantation. HPB (Oxford). 2007; 9 (3): 174-182. DOI: 10.1080/13651820601175926. PMID: 18333218

17. Memar M.Y., Yekani M. Alizadeh N., Baghi H.B. Hyperbaric oxygen therapy: Antimicrobial mechanisms and clinical application for infections. Biomed Pharmacother. 2019; 109: 440-447. DOI: 10.1016/j.biopha.2018.10.142. PMID: 30399579

18. Benko R., Miklos Z., Agoston V.A., Ihonvien K., Repas C., Csepanyi-Komi R., Kerek M., Beres N.J., Horvath E.M. Hyperbaric Oxygen Therapy Dampens Inflammatory Cytokine Production and Does Not Worsen the Cardiac Function and Oxidative State of Diabetic Rats. Antioxidants (Basel). 2019; 8 (12): 607. DOI: 10.3390/antiox8120607. PMID: 31801203

19. Rossignol D.A., Rossignol L.W., James S.J., Melnyk S., Mumper E. The effects of hyperbaric oxygen therapy on oxidative stress, inflammation, and symptoms in children with autism: an open-label pilot study. BMC Pediatr. 2007; 7: 36. DOI: 10.1186/1471-2431-7-36. PMID: 18005455

20. Francis A., Baynosa R.C. Hyperbaric Oxygen Therapy for the Compromised Graft or Flap. Adv. Wound Care (New Rochelle). 2017; 6 (1): 23-32. DOI: 10.1089/wound.2016.0707. PMID: 28116225

21. Sheikh A.Y., Gibson J.J., Rollins M.D., Hopf H.W., Hussain Z., Hunt T.K. Effect of hyperoxia on vascular endothelial growth factor levels in a wound model. Arch Surg. 2000; 135 (11): 1293-1297. DOI: 10.1001/archsurg.135.11.1293. PMID: 11074883

22. Mazariegos G.V., O’Toole K., Mieles L.A., Dvorchik I., Meza M., Brias-soulis G., Arzate J., Osorio G., Fung J.J., Reyes J. Hyperbaric Oxygen Therapy for Hepatic Artery Thrombosis After Liver Transplantation in Children. Liver Transpl. Surg. 1999; 5 (5): 429-436. DOI: 10.1002/lt.500050518. PMID: 10477845

23. Godman C.A., Joshi R., Giardina C., Perdrizet G., Hightower L.E. Hyperbaric oxygen treatment induces antioxidant gene expression. Ann. N. Y. Acad. Sci. 2010; 1197: 178-183. DOI: 10.1111/j.1749-6632.2009.05393.x. PMID: 20536847

24. Gurer A., Ozdogan M., Gomceli I., Demirag A., Gulbahar O., Arikok T., Kulacoglu H., Dundar K., Ozlem N. Hyperbaric oxygenation attenuates renal ischemia-reperfusion injury in rats. Transplant. Proc. 2006; 38 (10): 3337-3340. DOI: 1010.1016/j.transproceed.2006.10.184. PMID: 17175266

25. Ozden T.A., Uzun H., Bohloli M., Toklu A.S., Paksoy M., Simsek G., Durak H., Issever H., Ipek T. The Effects of Hyperbaric Oxygen Treatment on Oxidant and Antioxidants Levels During Liver Regeneration in Rats. Tohoku J. Exp. Med. 2004; 203 (4): 253-265. DOI: 10.1620/tjem.203.253. PMID: 15297730

26. Zhong X., Tao X,. Tang Y., Chen R. The outcomes of hyperbaric oxygen therapy to retrieve hypoxemia of severe novel coronavirus pneumonia: first case report. Zhonghua Hanghai Yixue yu Gaoqiya Yixue Zazhi. 2020. DOI: 10.3760/cma.j.issn.1009-6906.2020.0001

27. Tug T., Karatas F., Terzi S.M., Ozdemir N. Comparison of Serum Malondialdehyde Levels Determined by Two Different Methods in Patients With COPD: HPLC or TBARS Methods. Lab Med. 2005; 36 (1): 41-44. DOI: 10.1309/WTEET9TJ2LUMB3C3

28. Khubutiya M.S., Evseev A.K., Kolesnikov V.A., Goldin M.M., Davydov A.D., Volkov A.G., Stepanov A.A. Measurements of platinum electrode potential in blood and blood plasma and serum. Russ. J. Electrochem. 2010; 46 (5): 537-541. DOI: 10.1134/S1023193510050071

29. COVID-19 Therapeutic Trial Synopsis https://www.who.int/blue-print/priority-diseases/key-action/COVID-19_Treatment_Trial_De-sign_Master_Protocol_synopsis_Final_18022020.pdf

30. Sies H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015; 4: 180-183. DOI: 10.1016/j.redox.2015.01.002. PMID: 25588755

31. Van den Brand J.M.A., Haagmans B.L., van Riel D. The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models. J. Comp. Pathol. 2014; 151 (1): 83-112. DOI: 10.1016/j.jcpa.2014.01.004. PMID: 24581932

32. Smith J.T., Willey N.J., Hancock J.T. Low dose ionizing radiation produces too few reactive oxygen species to directly affect antioxidant concentrations in cells. Biol. Lett. 2012; 8 (4): 594-597. DOI: 10.1098/rsbl.2012.0150. PMID: 22496076

33. Goldin Michael M., Khubutiya M.Sh., Evseev A.K., Goldin M.M., Pinchuk A.V., Pervakova E.I., Tarabrin Y.A., Hall P.J. Noninvasive diagnosis of dysfunctions in patients after organ transplantation by monitoring the redox potential of blood serum. Transplantation. 2015; 99 (6): 1288-1292. DOI: 10.1097/tp.0000000000000519. PMID: 25606793

34. Leonov A. N. Hyperoxia: Adaptation. Sanogenesis. — Voronezh; Voronezh State University of Medicine, 2006. — 192 p. [In Russ.]. ISBN 5-91132-003-7

35. Savilov P. N. Genetic mechanisms of hyperoxic sanogenesis. Byulleten’ giperbaricheskoj biologii i meditsiny. 2007; 15 (1-4): 3-56 [In Russ.].

36. Somova L.M., Besednova N.N., Plekhova N.G. Apoptosis and infectious diseases. Infektsiya i immunitet. 2014; 4 (4): 303-318 [In Russ.]. DOI: 10.15789/2220-7619-2014-4-303-318

37. Azkur A.K., Akdis M., Azkur D., Sokolowska M., van de Veen W., Brdggen M.C., O’Mahony L., Gao Y., Nadeau K., Akdis C.A. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy. 2020; 75 (7): 1564-1581. DOI: 10.1111/all.14364. PMID: 32396996

38. Fathi N., Rezaei N. Lymphopenia in COVID-19: Therapeutic opportunities. Cell Biol. Int. 2020: 1-6. DOI: 10.1002/cbin.11403. PMID: 32458561

39. Giamarellos-Bourboulis E.J., Netea M.G., Rovina N., Akinosoglou K., Antoniadou A., Antonakos N., Damoraki G., Gkavogianni T., Adami M.E., Katsaounou P., Ntaganou M., Kyriakopoulou M., Dimopoulos G., Koutsodimitropoulos I., Velissaris D., Koufargyris P., Karageorgos A., Katrini K., Lekakis V., Lupse M., Kotsaki A., Renieris G., Theodoulou D., Panou V., Koukaki E., Koulouris N., Gogos C., Koutsoukou A. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe. 2020; 27 (6) 992-1000.e3. DOI: 10.1016/j.chom.2020.04.009. PMID: 32320677


Review

For citations:


Petrikov S.S., Evseev A.K., Levina O.A., Shabanov A.K., Kulabukhov V.V., Kutrovskaya N.Yu., Borovkova N.V., Klychnikova Е.V., Goroncharovskaya I.V., Tazina E.V., Popugaev K.А., Kosolapov D.A., Slobodeniuk D.S. Hyperbaric Oxygen Therapy in Patients with COVID-19. General Reanimatology. 2020;16(6):4-18. https://doi.org/10.15360/1813-9779-2020-6-4-18

Views: 1849


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)