Preview

General Reanimatology

Advanced search

Storage Time of Filtered Red Blood Cells and Post-Transfusion Complications (Review)

https://doi.org/10.15360/1813-9779-2021-1-69-82

Abstract

Red blood cells are the most required blood transfusion products worldwide. Safety and efficacy of blood transfusion are still relevant issues. Clarification of the causes and mechanisms of post-transfusion complications requires additional research.

Aim of the review is to summarize the data of clinical and research studies on transfusion of red blood cell suspension with various storage times.

Material. We selected 76 sources from Web of Science, Scopus, and RSCI databases containing pertinent clinical and scientific research data, as well as blood transfusion guidelines.

Results. We reviewed the main stages of preparation and storage of filtered red blood cells, described biochemical and structural alterations occurring during blood storage, summarized clinical data on post-transfusion complications, and analyzed clinical consequences and molecular structure abnormalities of red blood cells in relation to their storage time.

Conclusion. During long-term storage, red blood cells undergo significant structural and metabolic changes. The clinical use of relatively «old» red blood cells increases the risk of post-transfusion complications. However, the pathophysiological differences between «young» and «old» erythrocytes remain unclear. Large clinical and molecular research studies may add to our understanding of the complex issues related to blood transfusion.

About the Authors

V. V. Moroz
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

Viktor V. Moroz 

25 Petrovka Str., Bldg. 2, 107031 Moscow



E. A. Sherstyukova
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology; Sechenov First Moscow State Medical University, Ministry of Health of Russia
Russian Federation

Ekaterina A. Sherstyukova 

25 Petrovka Str., Bldg. 2, 107031 Moscow,

2-4 Bolshaya Pirogovskaya Str., 119991 Moscow



E. K. Kozlova
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology; Sechenov First Moscow State Medical University, Ministry of Health of Russia
Russian Federation

Elena K. Kozlova 

25 Petrovka Str., Bldg. 2, 107031 Moscow,

2-4 Bolshaya Pirogovskaya Str., 119991 Moscow



V. A. Sergunova
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

Victoria A. Sergunova  

25 Petrovka Str., Bldg. 2, 107031 Moscow



References

1. Jiao C., Zheng L. Blood transfusion‐related immunomodulation in patients with major obstetric haemorrhage. Vox Sang. 2019; 114 (8): 861–868. PMID: 31587289. DOI: 10.1111/vox.12845.

2. Culp-Hill R., Srinivasan A.J., Gehrke S., Kamyszek R., Ansari A., Shah N., Welsby I., D’Alessandro A. Effects of red blood cell (RBC) transfusion on sickle cell disease recipient plasma and RBC metabolism. Transfusion. 2018; 58 (12): 2797–2806. PMID: 30265764. DOI: 10.1111/trf.14931.

3. Hood A.M., King A.A., Fields M.E., Ford A.L., Guilliams K.P., Hulbert M.L., Lee J.M., White D.A. Higher executive abilities following a blood transfusion in children and young adults with sickle cell disease. Pediatr. Blood Cancer. 2019; 66 (10): e27899. PMID: 31267645. DOI: 10.1002/pbc.27899.

4. Thurn L., Wikman A., Westgren M., Lindqvist P.G. Massive blood transfusion in relation to delivery: incidence, trends and risk factors: a population‐based cohort study. BJOG. 2019; 126 (13): 1577–1586. PMID: 31483935. DOI: 10.1111/1471-0528.15927.

5. Akselrod B.A., Balashova E.N., Bautin A.E., Bakhovadinov B.B., Biryukova L.S., Bulanov A.Y., Bystrykh O.A., Vinogradova M.A., Galstyan G.M., Gaponova T.V., Golovkina L.L., Gorokhovskiy V.S., Eremenko A.A., Zhiburt E.B., Zhuravel S.V., Kokhno A.V., Kuzmina L.A., Kulabukhov V.V., Kupryashov A.A., Lubnin A.Y., Mazurok V.A., Menshugin I.N., Mineeva N.V., Mihailova E.A., Nikitin E.A., Olovnikova N.I., Oshorov A.V., Pevtsov D.E., Poptsov V.N., Rogachevskiy O.V., Salimov E.L., Titkov K.V., Trakhtman P.E., Troitskaya V.V., Fedorova T.A., Fidarova Z.T., Tsvetaeva N.V., Chzhao A.V., Shestakov E.F. Сlinical guidelines for red blood cell transfusion. Russian journal of hematology and transfusiology. 2018; 63 (4): 372–435. [In Russ.] DOI: 10.25837/HAT.2019.62.39.006.

6. Wardrop K.J., Owen T.J., Meyers K.M. Evaluation of an additive solution for preservation of canine red blood cells. J. Vet. Intern. Med. 1994; 8 (4): 253–257. PMID: 7983619. DOI: 10.1111/j.1939-1676.1994.tb03228.x.

7. Dumont L.J., AuBuchon J.P. Biomedical Excellence for Safer Transfusion (BEST) Collaborative. Evaluation of proposed FDA criteria for the evaluation of radiolabeled red cell recovery trials. Transfusion. 2008; 48 (6): 1053–1060. PMID: 18298603. DOI: 10.1111/j.1537-2995.2008.01642.x.

8. EDQM (European Directorate for the Quality of Medicines & Health Care of the Council of Europe). Guide to the Preparation, Use and Quality Assurance of Blood Components. 2017.

9. Lacroix J., Hébert P.C., Fergusson D.A., Tinmouth A., Cook D.J., Marshall J.C., Clayton L., McIntyre L., Callum J., Turgeon A.F., Blajchman M.A., Walsh T.S., Stanworth S.J., Campbell H., Capellier G., Tiberghien P., Bardiaux L., van de Watering L., van der Meer N.J., Sabri E., Vo D.; ABLE Investigators; Canadian Critical Care Trials Group. Age of transfused blood in critically ill adults. N. Engl. J. Med. 2015; 372 (15): 1410– 1418. PMID: 25853745. DOI: 10.1056/NEJMoa1500704.

10. Garraud O. Effect of «old» versus «fresh» transfused red blood cells on patients’ outcome: probably more complex than appears. J. Thorac. Dis. 2017; 9 (2): E146–E148. PMID: 28275500. DOI: 10.21037/jtd.2017.02.03.

11. García-Roa M., Del Carmen Vicente-Ayuso M., Bobes A.M., Pedraza A.C., González-Fernández A., Martín M.P., Sáez I., Seghatchian J., Gutiérrez L. Red blood cell storage time and transfusion: current practice, concerns and future perspectives. Blood Transfus. 2017; 15 (3): 222–231. PMID: 28518049. DOI: 10.2450/2017.0345-16.

12. Jones A.R., Patel R.P., Marques M.B., Donnelly J.P., Griffin R.L., Pittet J.F., Kerby J.D., Stephens S.W., DeSantis S.M., Hess J.R., Wang H.E. PROPPR Study Group. Older blood is associated with increased mortality and adverse events in massively transfused trauma patients: secondary analysis of the PROPPR Trial. Ann. Emerg. Med. 2019; 73 (6): 650–661. PMID: 30447946. DOI: 10.1016/j.annemergmed.2018.09.033.

13. Hess J.R. An update on solutions for red cell storage. Vox Sang. 2006; 91: 13-19. PMID: 16756596. DOI: 10.1111/j.1423-0410.2006.00778.x.

14. García-Roa M., Del Carmen Vicente-Ayuso M., Bobes A.M., Pedraza A.C., González-Fernández A., Martín M.P., Sáez I., Seghatchian J., Gutiérrez L. Red blood cell storage time and transfusion: current practice, concerns and future perspectives. Blood Transfus. 2017; 15 (3): 222–231. PMID: 28518049. DOI: 10.2450/2017.0345-16.

15. Cancelas J.A. Dumont L.J., Maes L.A., Rugg N., Herschel L., Whitley P.H., Z.M. Szczepiokowski, A.H. Siegel, J.R. Hess, M. Zia. Additive solution‐7 reduces the red blood cell cold storage lesion. Transfusion. 2015; 55 (3): 491–498. PMID: 25233911. DOI: 10.1111/trf.12867.

16. D’Alessandro A., Reisz J.A., Culp-Hill R., Korsten H., van Bruggen R., de Korte D. Metabolic effect of alkaline additives and guanosine/gluconate in storage solutions for red blood cells. Transfusion. 2018; 58 (8): 1992–2002. PMID: 29624679. DOI: 10.1111/trf.14620.

17. Lagerberg J. W., Korsten H., Van Der Meer P. F., De Korte D. Prevention of red cell storage lesion: a comparison of five different additive solutions. Blood Transfus. 2017. 15 (5): 456–462. PMID: 28488968. DOI: 10.2450/2017.0371-16.

18. Hoehn R.S., Jernigan P.L., Chang A.L., Edwards M.J., Pritts T.A. Molecular mechanisms of erythrocyte aging. Biol Chem. 2015; 396 (6–7): 621–631. PMID: 25803075. DOI: 10.1515/hsz-2014-0292.

19. Severin E.S. Biochemistry textbook. M.: GEOTAR-MED; 2015: 768. ISBN 978-5-9704-2029-4. [In Russ.]

20. Wongsari M.H., Rachmawati M., Mansyur A. Glucose level analysis on stored packed red cells. Indonesian journal of clinical pathology and medical laboratory. 2018. 24 (2): 117–121. DOI: 10.24293.ijcpml.v24i2.1308.

21. Xiong Y., Xiong Y., Wang Y., Wang Z., Zhang A., Zhao N., Zhao D., Yu Z., Wang Z., Yi J., Luan X. Inhibition of Glutathione Synthesis via Decreased Glucose Metabolism in Stored RBCs. Cell Physiol. Biochem. 2018; 51 (5): 2172–2184. PMID: 30537727. DOI: 10.1159/000495864.

22. Lagerberg J.W., Korsten H., Van Der Meer P.F., De Korte D. Prevention of red cell storage lesion: a comparison of five different additive solutions. Blood Transfus. 2017; 15 (5): 456–462. PMID: 28488968. DOI: 10.2450/2017.0371-16.

23. Orlov D., Karkouti K. The pathophysiology and consequences of red blood cell storage. Anaesthesia. 2015; 70 (Suppl 1): 29–37. PMID: 25440392. DOI: 10.1111/anae.12891.

24. Yoshida T., Prudent M., D’Alessandro A. Red blood cell storage lesion: causes and potential clinical consequences. Blood Transfus. 2019; 17 (1): 27–52. PMID: 30653459. DOI: 10.2450/2019.0217-18.

25. AlMoshary M., Mussaed E.A., Arab-Din M. Biochemical profile changes in stored donor blood for transfusion. Pak. J. Med. Sci. 2019; 35 (6): 1697–1700. PMID: 31777518. DOI: 10.12669/pjms.35.6.220.

26. Antwi-Baffour S., Adjei J.K., Tsyawo F., Kyeremeh R., Botchway F.A., Seidu M.A. A Study of the Change in Sodium and Potassium Ion Concentrations in Stored Donor Blood and Their Effect on Electrolyte Balance of Recipients. Biomed. Res. Int. 2019; 2019: 8162975. PMID: 31662997. DOI: 10.1155/2019/8162975.

27. Chernysh A.M., Kozlova E.K., Moroz V.V., Sergunova V.A., Gudkova O.E., Manchenko E.A., Kozlov A.P. Effects of succinate-based antioxidant on in vitro conversion of methemoglobin in oxyhemoglobin. Obshchaya Reanimatologiya=General Reanimatology. 2018; 14 (2): 46–59. [In Russ.]. DOI: 10.15360/1813-9779-2018-2-46-59.

28. Baron-Stefaniak J., Leitner G.C., Küntzel N.K., Meyer E.L., Hiesmayr M.J., Ullrich R., Baron D.M. Transfusion of standard-issue packed red blood cells induces pulmonary vasoconstriction in critically ill patients after cardiac surgery — A randomized, double-blinded, clinical trial. PloS One. 2019; 14 (3): e0213000. PMID: 30856182. DOI: 10.1371/journal.pone.0213000.

29. Beresov T.T., Korovkin B.F. Biological chemistry. M: Medicine; 1998: 704. ISBN 5-225-02709-1. [In Russ.]

30. David S. R., Sawal N. S., Hamzah M. N. S. B., Rajabalaya R. The blood blues: A review on methemoglobinemia. J. Pharmacol. Pharmacother. 2018; 9 (1): 1–5. DOI: 10.4103/jpp.JPP_79_17.

31. Antonelou M.H., Kriebardis A.G., Papassideri I.S. Aging and death signalling in mature red cells: from basic science to transfusion practice. Blood Transfus. 2010; 8 (Suppl 3): s39–s47. PMID: 20606748. DOI: 10.2450/2010.007S.

32. Mittag D., Sran A., Chan K.S., Boland M.P., Bandala-Sanchez E., Huet O., Xu W., Sparrow R.L. Stored red blood cell susceptibility to in vitro transfusion-associated stress conditions is higher after longer storage and increased by storage in saline-adenine-glucose-mannitol compared to AS-1. Transfusion. 2015; 55 (9): 2197–206. PMID: 25968419. DOI: 10.1111/trf.13138.

33. Lux S.E. 4th. Anatomy of the red cell membrane skeleton: unanswered questions. Blood. 2016; 127 (2): 187–199. PMID: 26537302. DOI: 10.1182/blood-2014-12-512772.

34. Xing F., Hu F., Yang J., Pan L., Xu J. Structural and functional studies of erythrocyte membrane-skeleton by single-cell and singlemolecule techniques. J. Innov. Opt. Health Sci. 2019; 12 (1): 1830004. DOI: 10.1142/S1793545818300045.

35. Leal J., Adjobo-Hermans M., Bosman G. Red Blood Cell Homeostasis: Mechanisms and Effects of Microvesicle Generation in Health and Disease. Front. Physiol. 2018; 9: 703. PMID: 29937736. DOI: 10.3389/fphys.2018.00703.

36. Kozlova E., Chernysh A., Sergunova V., Manchenko E., Moroz V., Kozlov A. Conformational distortions of the red blood cell spectrin matrix nanostructure in response to temperature changes in vitro. Scanning. 2019; 2019: 1–12. PMID: 31198487. DOI: 10.1155/2019/8218912.

37. Azouzi S., Romana M., Arashiki N., Takakuwa Y., El Nemer W., Peyrard T., Colin Y., Amireault P., Le Van Kim C. Band 3 phosphorylation induces irreversible alterations of stored red blood cells. Am. J. Hematol. 2018; 93 (5): E110–E112. PMID: 29352741. DOI: 10.1002/ajh.25044.

38. Pollet H., Conrard L., Cloos A.S., Tyteca D. Plasma Membrane Lipid Domains as Platforms for Vesicle Biogenesis and Shedding? Biomolecules. 2018; 8 (3): 94. PMID: 30223513. DOI: 10.3390/biom8030094.

39. Welbourn E.M., Wilson M.T., Yusof A., Metodiev M.V., Cooper C.E. The mechanism of formation, structure and physiological relevance of covalent hemoglobin attachment to the erythrocyte membrane. Free Radic. Biol. Med. 2017; 103: 95–106. PMID: 28007575. DOI: 10.1016/j.freeradbiomed.2016.12.024.

40. Thielen A.J.F., Meulenbroek E.M., Baas I., Bruggen R., Zeerleder S.S., Wouters D. Complement Deposition and IgG Binding on Stored Red Blood Cells Are Independent of Storage Time. Transfus. Med. Hemother. 2018; 45 (6): 378–384. PMID: 30574054. DOI: 10.1159/000486759.

41. Diebel L. N., Liberati D. M. Red blood cell storage and adhesion to vascular endothelium under normal or stress conditions: An in vitro microfluidic study. J. Trauma Acute Care Surg. 2019; 86 (6): 943–951. PMID: 30830050. DOI: 10.1097/TA.0000000000002239.

42. Youssef L. A., Rebbaa A., Pampou S., Weisberg S. P., Stockwell B. R., Hod E. A., Spitalnik S. L. Increased erythrophagocytosis induces ferroptosis in red pulp macrophages in a mouse model of transfusion. Blood. 2018; 131 (23): 2581–2593. PMID: 29666112. DOI: 10.1182/blood2017-12-822619.

43. Obrador R., Musulin S., Hansen B. Red blood cell storage lesion. J. Vet Emerg. Crit. Care (San Antonio). 2015; 25 (2): 187–199. PMID: 25428860. DOI: 10.1111/vec.12252.

44. Roche E., Passmore M., Simonova G., Diab S., Dunster K., Bierman W., Fraser J., Tung J. P. A Histologic Approach to Qualify Lung Tissue Damage in a Sheep Model of Transfusion-Related Lung Injury: Role of Red Blood Cell Storage Duration and Heat Treatment. Am. J. Clin. Pathol. 2016; 146 (suppl_1): 49. DOI: 10.1093/ajcp/aqw161.049.

45. Woźniak M.J., Qureshi S., Sullo N., Dott W., Cardigan R., Wiltshire M., Nath M., Patel N.N., Kumar T., Goodall A.H., Murphy G.J. A comparison of red cell rejuvenation versus mechanical washing for the prevention of transfusion-associated organ injury in swine. Anesthesiology. 2018; 128 (2): 375–385. PMID: 29120945. DOI: 10.1097/ALN.0000000000001973.

46. Raat N.J., Verhoeven A.J., Mik E.G., Gouwerok C.W., Verhaar R., Goedhart P.T., de Korte D., Ince C. The effect of storage time of human red cells on intestinal microcirculatory oxygenation in a rat isovolemic exchange model. Crit. Care Med. 2005; 33 (1): 39–45. PMID: 15644646. DOI: 10.1097/01.ccm.0000150655.75519.02.

47. Fitzgerald R.D, Martin C.M., Dietz G.E., Doig G.S., Potter R.F., Sibbald W.J. Transfusing red blood cells stored in citrate phosphate dextrose adenine-1 for 28 days fails to improve tissue oxygenation in rats. Crit. Care Med. 1997; 25 (5): 726–732. PMID: 9187588. DOI: 10.1097/00003246-199705000-00004.

48. Gilson C.R., Kraus T.S., Hod E.A., Hendrickson J.E., Spitalnik S.L., Hillyer C.D., Shaz B.H., Zimring J.C. A novel mouse model of red blood cell storage and posttransfusion in vivo survival. Transfusion. 2009; 49 (8): 1546–1553. PMID: 19573176. DOI: 10.1111/j.1537-2995.2009.02173.x.

49. Wang D., Cortés-Puch I., Sun J., Solomon S.B., Kanias T., Remy K.E., Feng J., Alimchandani M., Quezado M., Helms C., Perlegas A., Gladwin M.T., Kim-Shapiro D.B., Klein H.G., Natanson C. Transfusion of older stored blood worsens outcomes in canines depending on the presence and severity of pneumonia. Transfusion. 2014; 54 (7): 1712– 1724. PMID: 24588210. DOI: 10.1111/trf.12607.

50. Marik P.E., Sibbald W.J. Effect of stored-blood transfusion on oxygen delivery in patients with sepsis. JAMA. 1993; 269 (23): 3024–3029. PMID: 8501845.

51. Kiraly L.N., Underwood S., Differding J.A., Schreiber M.A. Transfusion of aged packed red blood cells results in decreased tissue oxygenation in critically injured trauma patients. J. Trauma. 2009; 67 (1): 29– 32. PMID: 19590304. DOI: 10.1097/TA.0b013e3181af6a8c.

52. Zallen G., Offner P.J., Moore E.E., Blackwell J., Ciesla D.J., Gabriel J., Denny C., Silliman C.C. Age of transfused blood is an independent risk factor for postinjury multiple organ failure. Am. J. Surg. 1999; 178 (6): 570–572. PMID: 10670874. DOI: 10.1016/s0002-9610(99)00239-1.

53. Weinberg J.A., McGwin G.Jr., Vandromme M.J., Marques M.B., Melton S.M., Reiff D.A., Kerby J.D., Rue L.W. 3rd. Duration of red cell storage influences mortality after trauma. J. Trauma. 2010; 69 (6): 1427–1431. PMID: 21150522. DOI: 10.1097/TA.0b013e3181fa0019.

54. Spinella P.C. Carroll C.L., Staff I., Gross R., Mc. Quay J., Keibel L., Wade C.E., Holcomb J.B. Duration of red blood cell storage is associated with increased incidence of deep vein thrombosis and in hospital mortality in patients with traumatic injuries. Crit. Care. 2009; 13 (5): R151. PMID: 19772604. DOI: 10.1186/cc8050.

55. DeSantis S.M., Brown D.W., Jones A.R., Yamal J.M., Pittet J.F., Patel R.P., Wade C.E., Holcomb J.B., Wang H.; PROPPR Study Group. Characterizing red blood cell age exposure in massive transfusion therapy: the scalar age of blood index (SBI). Transfusion. 2019; 59 (8): 2699–2708. PMID: 31050809. DOI: 10.1111/trf.15334.

56. Sparrow R. L. Red blood cell storage duration and trauma. Transfus. Med. Rev. 2015; 29 (2): 120–126. PMID: 25573415 DOI: 10.1016/j.tmrv.2014.09.007.

57. Bishnoi A.K., Garg P., Patel K., Ananthanarayanan C., Shah R., Solanki A., Pandya H., Patel S. Effect of red blood cell storage duration on outcome after paediatric cardiac surgery: a prospective observational study. Heart Lung Circ. 2019; 28 (5): 784–791. PMID: 29706495. DOI: 10.1016/j.hlc.2018.03.012.

58. Steiner M.E., Ness P.M., Assmann S.F., Triulzi D.J., Sloan S.R., Delaney M., Granger S., Bennett-Guerrero E., Blajchman M.A., Scavo V., Carson J.L., Levy J.H., Whitman G., D’Andrea P., Pulkrabek S., Ortel T.L., Bornikova L., Raife T., Puca K.E., Kaufman R.M., Nuttall G.A., Young P.P., Youssef S., Engelman R., Greilich P.E., Miles R., Josephson C.D., Bracey A., Cooke R., McCullough J., Hunsaker R., Uhl L., McFarland J.G., Park Y., Cushing M.M., Klodell C.T., Karanam R., Roberts P.R., Dyke C., Hod E.A., Stowell C.P. Effects of red-cell storage duration on patients undergoing cardiac surgery. N. Engl. J. Med. 2015; 372 (15): 1419–1429. PMID: 25853746. DOI: 10.1056/NEJMoa1414219.

59. Sanders J., Patel S., Cooper J., Berryman J., Farrar D., Mythen M., Montgomery H.E. Red blood cell storage is associated with length of stay and renal complications after cardiac surgery. Transfusion. 2011; 51 (11): 2286–2294. PMID: 21564106. DOI: 10.1111/j.1537-2995.2011.03170.x.

60. Baron-Stefaniak J., Leitner G.C., Küntzel N.K.I., Meyer E.L., Hiesmayr M.J., Ullrich R., Baron D.M. Transfusion of standard-issue packed red blood cells induces pulmonary vasoconstriction in critically ill patients after cardiac surgery — A randomized, double-blinded, clinical trial. PloS One. 2019; 14 (3): 1–14. PMID: 30856182. DOI: 10.1371/journal.pone.0213000.

61. Wun T., Hassell K. Best practices for transfusion for patients with sickle cell disease. Hematology Reports. 2010; 1 (2): e22. DOI: 10.4081/hr.2009.e22.

62. Shah N., Welsby I.J., Fielder M.A., Jacobsen W.K., Nielsen V.G. Sickle cell disease is associated with iron mediated hypercoagulability. J. Thromb. Thrombolysis. 2015; 40 (2): 182–185. PMID: 25986992. DOI: 10.1007/s11239-015-1230-6.

63. Gu Y., Estcourt L.J., Doree C., Hopewell S., Vyas P. Comparison of a restrictive versus liberal red cell transfusion policy for patients with myelodysplasia, aplastic anaemia, and other congenital bone marrow failure disorders. Cochrane Database Syst. Rev. 2015; 10: CD011577. PMID: 26436602. DOI: 10.1002/14651858.CD011577.pub2.

64. Chadebech P., de Menorval M.A., Bodivit G., Mekontso-Dessap A., Pakdaman S., Jouard A., Galactéros F., Bierling P., Habibi A., Pirenne F. Evidence of benefits from using fresh and cryopreserved blood to transfuse patients with acute sickle cell disease. Transfusion. 2016; 56 (7): 1730–1738. PMID: 27184475. DOI: 10.1111/trf.13636.

65. Dupuis C., Sonneville R., Adrie C., Gros A., Darmon M., Bouadma L., Timsit J.F. Impact of transfusion on patients with sepsis admitted in intensive care unit: a systematic review and meta-analysis. Ann. Intensive Care. 2017; 7 (1): 5. PMID: 28050898. DOI: 10.1186/s13613-016-0226-5.

66. Goel R., Johnson D.J., Scott A.V., Tobian A.A., Ness P.M., Nagababu E., Frank S.M. Red blood cells stored 35 days or more are associated with adverse outcomes in high-risk patients. Transfusion. 2016; 56 (7): 1690–1698. PMID: 27062463. DOI: 10.1111/trf.13559.

67. Hod E.A., Brittenham G.M., Billote G.B., Francis R.O., Ginzburg Y.Z., Hendrickson J.E., Jhang J., Schwartz J., Sharma S., Sheth S., Sireci A.N., Stephens H.L., Stotler B.A., Wojczyk B.S., Zimring J.C., Spitalnik S.L. Transfusion of human volunteers with older, stored red blood cells produces extravascular hemolysis and circulating non-transferrinbound iron. Blood. 2011; 118 (25): 6675–6682. PMID: 22021369. DOI: 10.1182/blood-2011-08-371849.

68. Cross J.H., Bradbury R.S., Fulford A.J., Jallow A.T., Wegmüller R., Prentice A.M., Cerami C. Oral iron acutely elevates bacterial growth in human serum. Sci. Rep. 2015; 5: 16670. PMID: 26593732. DOI: 10.1038/srep16670.

69. Hinshaw L.B. Sepsis/septic shock: Participation of the microcirculation: an abbreviated review. Crit. Care Med. 1996; 24 (6): 1072–1078. PMID: 8681576. DOI: 10.1097/00003246-199606000-00031.

70. Athar M.K., Puri N., Gerber D.R. Anemia and blood transfusions in critically ill patients. J. Blood Transfus. 2012; 2012: 1–7. PMID: 24066259. DOI: 10.1155/2012/629204.

71. Cholette J.M., Pietropaoli A.P., Henrichs K.F., Alfieris G.M., Powers K.S., Phipps R., Spinelli S.L., Swartz M., Gensini F., Daugherty L.E., Nazarian E., Rubenstein J.S., Sweeney D., Eaton M., Blumberg N. Longer RBC storage duration is associated with increased postoperative infections in pediatric cardiac surgery. Pediatr. Crit. Care Med. 2015; 16 (3): 227–235. PMID: 25607740. DOI: 10.1097/PCC.0000000000000320.

72. Manlhiot C., McCrindle B.W., Menjak I.B., Yoon H., Holtby H.M., Brandão L.R., Chan A.K., Schwartz S.M., Sivarajan V.B., CrawfordLean L., Foreman C., Caldarone C.A., Van Arsdell G.S., Gruenwald C.E. Longer blood storage is associated with suboptimal outcomes in high-risk pediatric cardiac surgery. Ann. Thorac. Surg. 2012; 93 (5): 1563–1569. PMID: 22137242. DOI: 10.1016/j.athoracsur.2011.08.075.

73. L’Acqua C., Bandyopadhyay S., Francis R.O., McMahon D.J., Nellis M., Sheth S., Kernie S.G., Brittenham G.M., Spitalnik S.L., Hod E.A. Red blood cell transfusion is associated with increased hemolysis and an acute phase response in a subset of critically ill children. Am. J. Hematol. 2015; 90 (10): 915–920. PMID: 26183122. DOI: 10.1002/ajh.24119.

74. Kozlova E., Chernysh A., Moroz V., Sergunova V., Gudkova O., Manchenko E. Morphology, membrane nanostructure and stiffness for quality assessment of packed red blood cells. Sci. Rep. 2017; 7 (1): 1–11. PMID: 28798476. DOI: 10.1038/s41598-017-08255-9.

75. Moroz V.V., Golubev A.M., Chernysh A.M., Kozlova E.K., Vasilyev V.Y., Gudkova O.E., Sergunova V.A., Fedorova M.S. Structural changes in the surface of red blood cell membranes during long-term donor blood storage. Obshchaya Reanimatologiya=General Reanimatology. 2012; 8 (1): 5–12. [In Russ.] DOI: 10.15360/1813-9779-2012-1-5.

76. Kozlova E., Chernysh A., Sergunova V., Kozlov A., Sherstyukova E. Transformation of spectrin matrix of red blood cell membranes. In book: Advances in Single-Molecule Research for Biology & Nanoscience; 2020: 7–6.


Review

For citations:


Moroz V.V., Sherstyukova E.A., Kozlova E.K., Sergunova V.A. Storage Time of Filtered Red Blood Cells and Post-Transfusion Complications (Review). General Reanimatology. 2021;17(1):69-82. https://doi.org/10.15360/1813-9779-2021-1-69-82

Views: 1312


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)