Involvement of Urokinase-Type Plasminogen Activator Receptor in the Formation of a Profibrotic Microenvironment in the Epicardial Region
https://doi.org/10.15360/1813-9779-2021-6-49-55
Abstract
The study of the mechanisms of development and progression of fibrosis is one of the key directions of modern cardiology. Our work suggests that the urokinase receptor (uPAR) is involved in the regulation of mesothelial cell activity and epicardial fibrosis development, which, when interacting with specific ligands and intermediate proteins, can activate intracellular signaling, trigger the cascade of proteolytic reactions, including local plasmin formation and activation of matrix metalloproteinases, providing matrix remodeling.
Objective: to perform a comparative study of fibrogenic activity of the epicardium in the hearts of uPAR-/- and wild-type animals and evaluate the effect of cardiac microenvironment factors on the migration activity of epicardial mesothelial cells.
Material and methods. We used histological and immunofluorescent staining, microarray analysis of proinflammatory cytokine levels, and a method for assessing the migratory properties of epicardial cells.
Results. Results. We found that compared to wild-type animals, uPAR-/- animals show significant thickening of the epicardial area (2.46+0.77 (uPAR-/- mice) and 1.02+0.17 (Wt mice) relative units, P=0.033) accompanied by accumulation of extracellular matrix proteins. Deficiency of uPAR gene leads to formation of proinflammatory microenvironment in the heart (increased levels of proinflammatory factors such as IL-1, IL-13, IL-17, RANTES and MIP1), increased migratory activity of epicardial mesothelial cells, accumulation of TCF21+fibroblast/myofibroblast precursors (29.8+13.7 (uPAR-/- mouse) and 3.03+0.8 (Wt mouse) cells per visual field,P=0.02), as well as development of subepicardial fibrosis.
Conclusion. These findings suggest that uPAR is a promising candidate for the developing targeted agents to prevent the development and progression of cardiac fibrosis.
About the Authors
K. V. DergilevRussian Federation
15a Cherepkovskaya 3rd Str., 121552 Moscow, Russia
Z. I. Tsokolayeva
Russian Federation
15a Cherepkovskaya 3rd Str., 121552 Moscow, Russia
25 Petrovka Str., Bldg. 2, 107031 Moscow, Russia
I. B. Beloglazova
Russian Federation
15a Cherepkovskaya 3rd Str., 121552 Moscow, Russia
Yu. D. Vasilets
Russian Federation
15a Cherepkovskaya 3rd Str., 121552 Moscow, Russia
D. O. Traktuyev
United States
1600 SW Archer Rd, M421 Gainesville, FL 32610 USA
B. N. Kulbitsky
Russian Federation
3 Tsyurupy Str., 117418 Moscow, Russia
6 Miklukho-Maсlaya Str., 117198 Moscow, Russia
E. V. Parfenova
Russian Federation
15a Cherepkovskaya 3rd Str., 121552 Moscow, Russia
27 Lomonosovsky Avenue, Bldg.1, 119192 Moscow, Russia
References
1. Derrick C.J., Noël E.S. The ECM as a driver of heart development and repair. Development. 2021; 148 (5): DOI: 10.1242/dev.191320. PMID: 33674261.
2. Nair N. Epidemiology and pathogenesis of heart failure with preserved ejection fraction. Review. Cardiovasc Med. 2020; 21 (4): 531–540. DOI: 10.31083/j.rcm.2020.04.154.
3. Mocumbi A.O., Stothard J.R., Correia-de-Sá P., Yacoub M. Endomyocardial Fibrosis: an Update After 70 Years.Curr Cardiol Rep. 2019; 21 (11): 148. DOI: 10.1007/s11886-019-1244-3. PMID: 317583524.
4. Zhou B., A. von Gise., Ma Q., Hu Y.W., Pu W.T. Genetic fate mapping demonstrates contribution of epicardium-derived cells to the annulus fibrosis of the mammalian heart. Dev. Biol. 338 (2010) 251–261. DOI: 10.1016/j.ydbio.2009.12.007. PMID: 20025864. PMCID: PMC2815244
5. Wessels. A, van den Hoff M.J., Adamo R.F., Phelps A.L., Lockhart M.M., Sauls K., Briggs L.E., Norris R.A., van Wijk B., Perez-Pomares J.M., Dettman R.W., Burch J.B. Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart. Dev. Biol. 2012; 366: 111–124. DOI: 10.1016/j.ydbio.2012.04.020. PMID: 22546693. PMCID: PMC3358438
6. von Gise A., Zhou B., Honor L.B., Ma Q., Petryk A., Pu W.T. WT1 regulates epicardial epithelial to mesenchymal transition through betacatenin and retinoic acid signaling pathways, Dev. Biol. 2011; 356: 421–431. DOI: 10.1016/j.ydbio.2011.05.668. PMID: 21663736. PMCID: PMC3147112
7. Braitsch C.M., Combs M.D., Quaggin, S.E., Yutzey K.E. Pod1/Tcf21 is regulated by retinoic acid signaling and inhibits differentiation of epicardium-derived cells into smooth muscle in the developing heart. Dev. Biol. 2012; 368: 345–357. DOI: 10.1016/j.ydbio.2012.06.002. PMID: 22687751. PMCID: PMC3414197
8. Acharya, A., Baek, S.T., Huang, G., Eskiocak, B., Goetsch, S., Sung, C.Y., Banfi, S., Sauer M.F., OlsenG.S., Duffield J.S. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development. 2012; 139: 2139–2149. DOI: 10.1242/dev.079970. PMID: 22573622. PMCID: PMC3357908
9. Moore-Morris T., Cattaneo P., Guimaraes-Camboa N., Bogomolovas J., Cedenilla M., Banerjee I., Ricote M., Kisseleva T., Zhang L., Gu Y., Dalton N.D., Peterson K.L., Chen J., Puceat M., Evans S.M. Infarct fibroblasts do not derive from bone marrow lineages. Circ. Res. 2012; 122 (4): 583–590. DOI: 10.1161/CIRCRESAHA.117.311490. PMID: 29269349. PMCID: PMC5815911
10. Moore-Morris T., Guimaraes-Camboa N., Banerjee I., Zambon A.C., Kisseleva T., Velayoudon A., Stallcup W.B., Gu Y. Dalton N.D, Cedenilla M., Gomez-Amaro R., Zhou B. Brenner D.A, Peterson K.L., Chen J., Evans S.M. Resident fibroblast lineages mediate pressure overloadinduced cardiac fibrosis. J Clin Invest. 2014; 124 (7): 2921–2934. DOI: 10.1172/JCI7478.3. PMID: 24937432. PMCID: PMC4071409
11. Braitsch C.M., Kanisicak O., van Berlo J.H., Molkentin J.D, Yutzey K.E. Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease. J. Mol. Cell. Cardiol. 2013; 65: 108–119. DOI: 10.1016/j.yjmcc.2013.10.005. PMID: 24140724. PMCID: PMC3848425
12. Santi A.Li., Napolitano F., Montuori N., Ragno P. The Urokinase Receptor: A Multifunctional Receptor in Cancer Cell Biology. Therapeutic Implications. Int J Mol Sci. 2021; 22 (8): 4111. DOI: 10.3390/ijms22084111. PMID: 33923400. PMCID: PMC8073738
13. Dergilev K.V., Stepanova V.V., Beloglazova I.B., Tsokolayev Z.I., Parfenova E.V. Multifaced Roles of the Urokinase System in the Regulation of Stem Cell Niches. Acta Naturae. 2018; 10 (4): 19–32. PMID: 30713759. PMCID: PMC6351041
14. Junqueira L.C., Bignolas G., Brentani R.R. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J. 1979; 11: 447–455. DOI: 10.1007/bf01002772
15. Dergilev K.V., Tsokolaeva Z.I., Beloglazova I.B., Ratner E.I., Parfenova E.V. Transforming Growth Factor Beta (TGF-β1) Induces Pro-Reparative Phenotypic Changes in Epicardial Cells in Mice.Bull Exp Biol Med. 2021; 170 (4): 565–570. DOI: 10.1007/s10517-021-05107-5.
16. Baart V.M., Houvast R.D., de Geus-Oei L.F., Quax P.H.A., Kuppen P.J.K., Vahrmeijer A.L., Sier C.F.M. Molecular imaging of the urokinase plasminogen activator receptor: opportunities beyond cancer. EJNMMI Res. 2020; 10 (1): 87. DOI: 10.1186/s13550-020-00673-7. PMID: 32725278. PMCID: PMC7387399
17. Genua M., D'Alessio S., Cibella J., Gandelli A., Sala E., Correale C., Spinelli A., Arena V., Malesci A., Rutella S., Ploplis V.A., Vetrano S., Danese S. The urokinase plasminogen activator receptor (uPAR) controls macrophage phagocytosis in intestinal inflammation. Gut. 2015; 64 (4): 589–600. DOI: 10.1136/gutjnl-2013-305933. PMID: 24848264
18. Jo M., Takimoto S., Montel V., Gonias S.L.The urokinase receptor promotes cancer metastasis independently of urokinase-type plasminogen activator in mice. Am J Pathol. 2009; 175 (1): 190–200. DOI: 10.2353/ajpath.2009.081053. PMID: 19497996. PMCID: PMC2708805
19. Jo M., Lester R.D., Montel V., Eastman B., Takimoto S., Gonias S.L. Reversibility of epithelial-mesenchymal transition (EMT) induced in breast cancer cells by activation of urokinase receptor-dependent cell signaling J Biol Chem. 2009; 284 (34): 22825–22833 DOI: 10.1074/jbc.M109.023960. PMID: 19546228. PMCID: PMC2755690
20. Hinz B., Phan S.H., Thannickal V.J., Prunotto M., Desmoulière A., Varga J., De Wever O., Mareel M., Gabbiani G. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol. 2012; 180 (4): 1340–1355. DOI: 10.1016/j.ajpath.2012.02.004. PMID: 22387320. PMCID: PMC3640252
21. Castella L.F., Buscemi L., Godbout C., Meister J.J., Hinz B. A new lockstep mechanism of matrix remodelling based on subcellular contractile events. J Cell Sci. 2010; 123 (Pt 10): 1751–1760. DOI: 10.1242/jcs.066795. PMID: 20427321
22. Wang L., Ly C.M., Ko C.Y., Meyers E.E., Lawrence D.A., Bernstein A.M. uPA binding to PAI-1 induces corneal myofibroblast differentiation on vitronectin. Invest Ophthalmol Vis Sci. 2012; 53 (8): 4765–4775. DOI: 10.1167/iovs.12-10042. PMID: 22700714. PMCID: PMC3949353
23. Stepanova V., Lebedeva T., Kuo A., Yarovoi S., Tkachuk S., Zaitsev S., Bdeir K., Dumler I., Marks M.S., Parfyonova Y., Tkachuk V.A., Higazi A.A., Cines D.B. Nuclear translocation of urokinase-type plasminogen activator. Blood. 2008; 112 (1): 100–110. DOI: 10.1182/blood-2007-07-104455. PMID: 18337556. PMCID: PMC2435680
24. Semina E.V., Rubina K.A., Shmakova A.A., Rysenkova K.D., Klimovich P.S., Aleksanrushkina N. A., Sysoeva V. Y., Karagyaur M.N., Tkachuk V.A. Downregulation of uPAR promotes urokinase translocation into the nucleus and epithelial to mesenchymal transition in neuroblastoma. J Cell Physiol. 2020; 235 (9): 6268–6286. DOI: 10.1002/jcp.29555. PMID: 31990070. PMCID: PMC7318179
25. Zhang G., Kernan K.A., Thomas A., Collins S., Song Y., Li L., Zhu W., Leboeuf R.C., Eddy A.A. A novel signaling pathway: fibroblast nicotinic receptor alpha1 binds urokinase and promotes renal fibrosis. J Biol Chem. 2009; 284 (42): 29050–29064. DOI: 10.1074/jbc.M109.010249. PMID: 19690163. PMCID: PMC2781451
26. Manetti M., Rosa I., Fazi M., Guiducci S., Carmeliet P., Ibba-Manneschi L., Matucci-Cerinic M. Systemic sclerosis-like histopathological features in the myocardium of uPAR-deficient mice. Ann Rheum Dis. 2016; 75 (2): 474–478. DOI: 10.1136/annrheumdis-2015-207803. PMID: 26269399
27. Mohameden M., Vashisht P., Sharman T. Scleroderma And Primary Myocardial Disease. 2021. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan. PMID: 32491618
28. Nikitorowicz-Buniak J., Denton C.P., Abraham D., Stratton R. Partially Evoked Epithelial-Mesenchymal Transition (EMT) Is Associated with Increased TGFβ Signaling within Lesional Scleroderma Skin. PLoS One. 2015; 10 (7): e0134092. DOI: 10.1371/journal.pone.0134092. PMID: 26217927
Review
For citations:
Dergilev K.V., Tsokolayeva Z.I., Beloglazova I.B., Vasilets Yu.D., Traktuyev D.O., Kulbitsky B.N., Parfenova E.V. Involvement of Urokinase-Type Plasminogen Activator Receptor in the Formation of a Profibrotic Microenvironment in the Epicardial Region. General Reanimatology. 2021;17(6):49-55. https://doi.org/10.15360/1813-9779-2021-6-49-55