Preview

General Reanimatology

Advanced search

Metabolomic Profiling of the Blood of Patients with Chronic Consciousness Disorders

https://doi.org/10.15360/1813-9779-2022-2-22-36

Abstract

   The main variants of chronic consciousness disorder (CCD) developing in adverse coma outcome are vegetative state/unresponsive wakefulness syndrome (VS/UWS) and minimal consciousness state (MCS).
   The aim of the study was to investigate the main differences in metabolomic abnormalities in patients with VS / UWS and MCS, as well as to identify changes in metabolomics depending on sleep or wakefulness phase.
   Materials and Methods. Untargeted metabolome analysis of blood plasma of 10 patients in VS / UWS (group 1) and 6 patients in MCS (group 2) was performed using reversed-phase and hydrophilic chromatography methods. The underlying conditions of brain injury were TBI (2 in group 1 and 5 in group 2) and hypoxia (8 in group 1 and 1 in group 2). The internal jugular vein was catheterized in all patients, and blood was collected while awake during the daytime for 2 days. Aliquots of pooled plasma samples were purified from protein components and analyzed by high-performance liquid chromatography in two modes: reversed-phase and hydrophilic ones. Mass-spectrometric detection was performed in full ion current scanning mode: registration of positively charged ions in the m/z range from 50 to 1300 a.u. Data were adjusted and normalized using MS-DIAL software ver. 4.70 software; differences were identified using analysis of variance, discriminant and cluster analysis. The data were analyzed and visualized using MetaboAnalyst 5.0 software (https://www.metaboanalyst.ca).
   Results. Four major metabolites (at VIP > 0.5), which content was most modulated depending on the study group, were identified including 4 (m/z 124.0867, Rt = 17.67, p < 0.01), 33 (m/z 782.5722, Rt = 17.69, p < 0.01), 6 (m/z 125.0904, Rt = 18.43, p < 0.01) and 1 (m/z 463.2304, Rt = 15.78, p < 0.01), with no significant differences between daytime and nighttime blood samples. Significant quantitative differences were shown for three metabolites in the groups, 14 (m/z 162.1126, Rt = 10.28, p < 0.01), 35 (m/z 780.5483, Rt = 7.65, p < 0.01), and 41 (m/z 806.5649, Rt = 7.58, p < 0.01), and four metabolites when comparing the daytime and nighttime samples: 14 (m/z 162.1126, Rt = 10.28, p = 0.0201), 35 (m/z 780.5483, Rt = 7.65, p < 0.01), 41 (m/z 806.5649, Rt = 7.58, p < 0.01), and 48 (m/z 848.5354, Rt = 7.65, p < 0.01).
   Conclusion. Untargeted metabolomic analysis confirmed the hypothesis of likely significant quantitative and qualitative differences in metabolite composition depending on the type of CCD and circadian rhythm. The study established a set of metabolites that are potential biomarkers for differential diagnosis of VS/UWS and MCS including 4, 33, 6, 1 (in the experiment on the reversed-phase column) and 14, 35, 41, 48 (in the experiment on the hydrophilic column), based on their significant contribution to intergroup and intragroup differences. Further studies will be aimed to characterize the identified metabolites.

About the Authors

A. A. Orlova
St. Petersburg State Chemical and Pharmaceutical University, Ministry of Health of Russia
Russian Federation

Anastasia A. Orlova

197376

14 Professor Popova Str.

St. Petersburg



E. A. Kondrat'eva
A. L. Polenov Russian Research Institute for Neurosurgery, V.A. Almazov National Research Center; Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

Ekaterina A. Kondrat'eva

191014

12 Mayakovsky Str.

St. Petersburg

107031

25 Petrovka Str., Bldg. 2

Moscow



Ya. A. Dubrovskii
V. A. Almazov National Medical Research Center, Ministry of Health of Russia
Russian Federation

Yaroslav A. Dubrovskii

197341

2 Akkuratova Str.

St. Petersburg



N. V. Dryagina
A. L. Polenov Russian Research Institute for Neurosurgery, V.A. Almazov National Research Center
Russian Federation

Natalia V. Dryagina

191014

12 Mayakovsky Str.

St. Petersburg



E. V. Verbitskaya
Academician I. P. Pavlov First Saint-Petersburg State Medical University, Ministry of Health of Russia
Russian Federation

Elena V. Verbitskaya

197022

6–8 Lev Tolstoy Str.

St. Petersburg



S. A. Kondratev
A. L. Polenov Russian Research Institute for Neurosurgery, V.A. Almazov National Research Center
Russian Federation

Sergey A. Kondratev

191014

12 Mayakovsky Str.

St. Petersburg



A. A. Kostareva
V. A. Almazov National Medical Research Center, Ministry of Health of Russia
Russian Federation

Anna A. Kostareva

197341

2 Akkuratova Str.

St. Petersburg



A. N. Kondratev
A. L. Polenov Russian Research Institute for Neurosurgery, V.A. Almazov National Research Center
Russian Federation

Anatoly N. Kondratev

191014

12 Mayakovsky Str.

St. Petersburg



References

1. Пирадов М. А. Российская рабочая группа по проблемам хронических нарушений сознания. Хронические нарушения сознания: терминология и диагностические критерии. Результаты первого заседания Российской рабочей группы по проблемам хронических нарушений сознания / М. А. Пирадов [и др.] // Анналы клинической и экспериментальной неврологии. – 2020. – 14 (1): 5–16. DOI: 10.25692/ACEN.2020.1.1.

2. Giacino J. T. The vegetative and minimally conscious states: consensus-based criteria for establishing diagnosis and prognosis. NeuroRehabilitation. 2004; 19 (4): 293–298. PMID: 15671583.

3. Giacino J. T., Katz D. I., Schiff N. D., Whyte J., Ashman E. J., Ashwal S., Barbano R., Hammond F. M., Laureys S., Ling G. S. F., Nakase-Richardson R., Seel R. T., Yablon S., Getchius T. S. D., Gronseth G. S., Armstrong M. J. Practice guideline update recommendations summary: Disorders of consciousness: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology; the American Congress of Rehabilitation Medicine; and the National Institute on Disability, Independent Living, and Rehabilitation Research. Neurology. 2018; 91 (10): 450–460. DOI: 10.1212/WNL.0000000000005926. PMID: 30089618; PMCID: PMC6139814.

4. Kondziella D., Bender A., Diserens K., van Erp W., Estraneo A., Formisano R., Laureys S., Naccache L., Ozturk S., Rohaut B., Sitt J. D., Stender J., Tiainen M., Rossetti A. O., Gosseries O., Chatelle C. EAN panel on coma, disorders of consciousness. european academy of neurology guideline on the diagnosis of coma and other disorders of consciousness. Eur J Neurol. 2020 May; 27 (5): 741–756. DOI: 10.1111/ene.14151. PMID: 32090418.

5. Luppi A. I., Cain J., Spindler L. R. B., Górska U. J., Toker D., Hudson A. E., Brown E. N., Diringer M. N., Stevens R. D., Massimini M., Monti M. M., Stamatakis E. A., Boly M. & Curing Coma Campaign and Its Contributing Collaborators. Mechanisms underlying disorders of consciousness: bridging gaps to move toward an integrated translational science. Neurocrit Care. 2021; 35 (Suppl 1): 37–54. DOI: 10.1007/s12028-021-01281-6. PMID: 34236622; PMCID: PMC8266690.

6. Iliff J. J., Wang M., Liao Y., Plogg B.A., Peng W., Gundersen G. A., Benveniste H., Vates G. E., Deane .R, Goldman S. A., Nagelhus E. A., Nedergaard M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Science Translational Medicine. 2012; 4 (147): 147ra111. DOI: 10.1126/scitranslmed.3003748.

7. Кондратьев А. Н. Глимфатическая система мозга: строение и практическая значимость / А. Н. Кондратьев, Л. М. Ценципер // Анестезиология и реаниматология. – 2019. – 6: 72–80. DOI: 10.17116/anaesthesiology201906172.

8. Lundgaard I., Lu M. L., Yang E., Peng W., Mestre H., Hitomi E., Deane R., Nedergaard M. Glymphatic clearance controls state-dependent changes in brain lactate concentration. Journal of Cerebral Blood Flow and Metabolism. 2017; 37 (6): 2112–2124. DOI: 10.1177/0271678X16661202. PMID: 27481936 PMCID: PMC5464705.

9. Lundgaard I., Li B., Xie L., Kang H., Sanggaard S., Haswell J. D. R., Sun W., Goldman S., Blekot S., Nielsen M., Takano T., Deane R., Nedergaard M. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nature Communications. 2015; 6: 7807. DOI: 10.1038/ncomms7807.

10. Hayton S., Maker G. L., Mullaney I., Trengove R. D. Experimental design and reporting standards for metabolomics studies of mammalian cell lines. Cell Mol Life Sci 2017; 74 (24): 4421–4441. DOI: 10.1007/s00018-017-2582-1. PMID: 28669031.

11. Fukuda A. M., Badaut J. Aquaporin 4: a player in cerebral edema and neuroinflammation. J Neuroinflammation. 2012; 9: 279. DOI: 10.1186/1742-2094-9-279 PMCID: PMC3552817. PMID: 23270503.

12. Gonzalez-Riano, C., Saiz, J., Barbas, C., Bergareche A., Huerta J. M., Ardanaz E., Konjevod M., Mondragon E., Erro M. E., Chirlaque M. D., Abilleira E., Goñi-Irigoyen F., Amiano P. Prognostic biomarkers of Parkinson’s disease in the Spanish EPIC cohort: a multiplatform metabolomics approach. npj Parkinsons Dis. 2021; 7 (1): 73 (2021). DOI: 10.1038/s41531-021-00216-4. PMID: 34400650. PMCID: PMC8368017.

13. Qureshi M. I., Vorkas P. A., Coupland A. P., Jenkins I. H., Holmes E., Davies A. H. Lessons from metabonomics on the neurobiology of stroke. Neuroscientist. 2017; 23 (4): 374–382. DOI: 10.1177/1073858416673327. PMID: 28345376.

14. Zheng F., Zhou Y. T, Li P. F., Hu E., Li T., Tang T., Luo J. K., Zhang W., Ding C. S., Wang Y. Metabolomics analysis of hippocampus and cortex in a rat model of traumatic brain injury in the subacute phase. Front Neurosci. 2020; 14: 876. DOI: 10.3389/fnins.2020.00876. PMID: 33013291. PMCID: PMC7499474.

15. Bernard C., Ktorza A., Gautier J. F., Ferré P., Bourron O., Foufelle F. Lipid environment induces ER stress, TXNIP expression and inflammation in immune cells of individuals with type 2 diabetes. Diabetologia. 2018; 61 (2): 399–412. DOI: 10.1007/s00125-017-4462-5. PMID: 28988346.

16. Eberlin L. S., Gabay M., Fan A. C., Gouw A. M., Tibshirani R. J., Felsher D. W., Zare R. N. Alteration of the lipid profile in lymphomas induced by MYC overexpression. Proc Natl Acad Sci USA. 2014; 111 (29): 10450–10455. DOI: 10.1073/pnas.1409778111. PMCID: PMC4115527. PMID: 24994904.

17. Chen M., Zhang J., Sampieri K., Clohessy J. G., Mendez L., Gonzalez-Billalabeitia E., Liu X. S., Lee Y. R., Fung J., Katon J. M., Menon A. V., Webster K. A., Ng C., Palumbieri M. D., Diolombi M. S., Breitkopf S. B., Teruya-Feldstein J., Signoretti S., Bronson R. T., Asara J. M., Castillo-Martin M., Cordon-Cardo C., Pandolfi P. P. An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer. Nat Genet. 2018; 50 (2): 206–218. DOI: 10.1038/s41588-017-0027-2. PMID: 29335545. PMCID: PMC6714980.

18. Xiong N., Gao X., Zhao H., Cai F., Zhang F. C., Yuan Y., Liu W., He F., Zacharias L. G., Lin H., Vu H. S., Xing C., Yao D. X., Chen F., Luo B., Sun W., De Berardinis R. J., Xu H., Ge W. P. Using arterial-venous analysis to characterize cancer metabolic consumption in patients. Nat Commun. 2020; 11 (1): 3169. DOI: 10.1038/s41467-020-16810-8. PMID: 32576825. PMCID: PMC7311411.

19. Chong J., Wishart D. S., Xia J. Using Metaboanalyst 4.0 for comprehensive and integrative metabolomics data analysis. Current Protocols in Bioinformatics. 2019; 68 (1): e86. DOI: 10.1002/cpbi.86. PMID: 31756036.

20. Xia J., Wishart D. S. Metabolomic data processing, analysis, and interpretation using metaboanalyst. Current Protocols in Bioinformatics. 2011; 34 (1): 14.10.1–14.10.48. DOI: 10.1002/0471250953.bi1410s34.

21. Yu J., Meng F., He F., Chen F., Bao W., Yu Y., Zhou J., Gao J., Li J., Yao Y., Ge W. P., Luo B. Metabolic abnormalities in patients with chronic disorders of consciousness. Aging and disease. 2021; 12 (2): 386–403. DOI: 10.14336/AD.2020.0812.

22. Proitsi P., Kim M., Whiley L., Simmons A., Sattlecker M., Velayudhan L., Lupton M. K., Soininen H., Kloszewska I., Mecocci P., Tsolaki M., Vellas B., Lovestone S., Powell J. F., Dobson R. J. B., Legido-Quigley C. Association of blood lipids with Alzheimer’s disease: a comprehensive lipidomics analysis. Alzheimers Dement, 2017; 13 (2): 140–151. DOI: 10.1016/j.jalz.2016.08.003. PMID: 27693183.

23. Chitturi J., Li Y., Santhakumar V., Kannurpatti S. S. Early behavioral and metabolomic change after mild to moderate traumatic brain injury in the developing brain. Neurochem Int. 2018; 120: 75–86. DOI: 10.1016/j.neuint.2018.08.003. PMID: 30098378. PMCID: PMC6257993.

24. Zheng F., Xia Z. A., Zeng Y. F., Luo J. K., Sun P., Cui H. J., Wang Y., Tang T., Zhou Y. T. Plasma metabolomics profiles in rats with acute traumatic brain injury. PLoS One. 2017; 12 (8), e0182025. DOI: 10.1371/journal.pone.0182025. PMID: 28771528. PMCID: PMC5542452.

25. Dawiskiba, T., Wojtowicz, W., Qasem, B., Tukaszewski M., Mielko K. A., Dawiskiba A., Banasik M., Skóra J.P., Janczak D., Młynarz P. Braindead and coma patients exhibit different serum metabolic profiles: preliminary investigation of a novel diagnostic approach in neurocritical care. Sci Rep. 2021; 11 (1): 15519. DOI: 10.1038/s41598-021-94625-3. PMID: 34330941. PMCID: PMC8324823.

26. Tsai I. L., Kuo T. C., Ho T. J., Harn Y. C., Wang S. Y., Fu W. M., Kuo C. H., Tseng Y. J. Metabolomic dynamic analysis of hypoxia in MDA-MB-231 and the comparison with inferred metabolites from transcriptomics data. Cancers (Basel). 2013; 5 (2): 491–510. DOI: 10.3390/cancers5020491. PMCID: PMC3730319. PMID: 24216987.

27. Solberg R., Kuligowski J., Pankratov L., Escobar J., Quintás G., Lliso I., Sánchez-Illana A., Saugstad O. D., Vento M. Changes of the plasma metabolome of newly born piglets subjected to postnatal hypoxia and resuscitation with air. Pediatr Res. 2016; 80 (2): 284–292. DOI: 10.1038/pr.2016.66. PMID: 27055187.

28. Baranovicova E., Grendar M., Kalenska D., Tomascova A., Cierny D., Lehotsky J. NMR metabolomic study of blood plasma in ischemic and ischemically preconditioned rats: an increased level of ketone bodies and decreased content of glycolytic products 24 h after global cerebral ischemia. J. Physiol. Biochem. 2018; 74 (3): 417–429. DOI: 10.1007/s13105-018-0632-2. PMID: 29752707.

29. Liu P., Li .R, Antonov A. A., Wang L., Li W., Hua Y., Guo H., Wang L., Liu P., Chen L., Tian Y., Xu F., Zhang Z., Zhu Y., Huang Y. Discovery of metabolite biomarkers for acute ischemic stroke progression. J. Proteome Res. 2017; 16 (2): 773–779. DOI: 10.1021/acs.jproteome.6b00779. PMID: 28092160.

30. Wang D., Kong J., Wu J., Wang X., Lai M. GC–MS-based metabolomics identifies an amino acid signature of acute ischemic stroke. Neurosci. Lett. 2017; 642: 7–13. DOI: 10.1016/j.neulet.2017.01.039 PMID: 28111353.

31. Wang Y., Wang Y. G., Ma T. F., Li M., Gu S. L. Dynamic metabolites profile of cerebral ischemia/reperfusion revealed by (1)H NMR-based metabolomics contributes to potential biomarkers. Int. J. Clin. Exp. Pathol. 2014; 7 (7): 4067–4075. PMID: 25120785. PMCID: PMC4129020.

32. Fiehn O. Metabolomics: The link between genotypes and phenotypes. Plant Mol. Biol. 2002; 48 (1–2): 155–171. DOI: 10.1023/A:1013713905833. PMID: 11860207.

33. Wishart, D. S., Feunang Y. D., Marcu A., Guo A. C., Liang K., Vázquez-Fresno R., Sajed T., Johnson D., Li C., Karu N., Sayeeda Z., Lo E., Assempour N., Berjanskii M., Singhal S., Arndt D., Liang Y., Badran H., Grant J., Serra-Cayuela A., Liu Y., Mandal R., Neveu V., Pon A., Knox C., Wilson M., Manach C., Scalbert A. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018; 46 (D1)D608–D617. DOI: 10.1093/nar/gkx1089. PMID: 29140435. PMCID: PMC5753273.

34. Дрягина Н. В. Метаболом головного мозга / Н. В. Дрягина и [др.] // Российский неврологический журнал. – 2020. – 25 (1): 4–12. DOI 10.30629/2658-7947-2020-25-1-4-12.

35. Лохов П. Г. Метаболомный анализ крови: назначение, реализация, интерпретация данных / П. Г. Лохов, А. В. Лисица, А. И. Арчаков // Биомедицинская химия. – 2017. – 63 (3): 232–240. DOI: 10.18097/PBMC20176303232. PubMed: 28781256.

36. Черневская Е. А. Микробиота кишечника при критических состояниях (обзор) / Е. А. Черневская, Н. В. Белобородова. – Общая реаниматология. – 2018. – 14 (5): 96–119. DOI: 10.15360/1813-9779-2018-5-96-119.

37. Nicholson J. K., Lindon J. C. & Holmes E. «Metabonomics»: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999; 29 (11): 1181–1189. DOI: 10.1080/004982599238047. PMID: 10598751.

38. Nicholson J. K., Holmes E., Kinross J. M., Darzi A. W., Takats Z., Lindon J. C. Metabolic phenotyping in clinical and surgical environments. Nature. 2012; 491 (7424): 384–392. DOI: 10.1038/nature11708. PMID: 23151581.

39. Fiehn O. Metabolomics: The link between genotypes and phenotypes. Plant Mol. Biol. 2002; 48 (1–2): 155–171. DOI: 10.1023/A:1013713905833. PMID: 11860207.

40. Trifonova O. P., Maslov D. L., Balashova E. E., Lokhov P. G. Mass spectrometry-based metabolomics diagnostics — myth or reality? Expert Review of Proteomics. 2021; 18: 7–12. DOI: 10.1080/14789450.2021.1893695.


Review

For citations:


Orlova A.A., Kondrat'eva E.A., Dubrovskii Ya.A., Dryagina N.V., Verbitskaya E.V., Kondratev S.A., Kostareva A.A., Kondratev A.N. Metabolomic Profiling of the Blood of Patients with Chronic Consciousness Disorders. General Reanimatology. 2022;18(2):22-36. https://doi.org/10.15360/1813-9779-2022-2-22-36

Views: 873


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)