Preview

General Reanimatology

Advanced search

Role of Urokinase-Type Plasminogen Activator Receptor in the Regulation of Angiogenic Properties of Sca1+ Vasculogenic Progenitor Cells

https://doi.org/10.15360/1813-9779-2022-2-76-82

Abstract

   Neoangiogenesis is the key process determining myocardial regeneration after infarction. The urokinase-type plasminogen activator receptor (uPAR) is known to play an important role in the regulation of endothelial cell function and postnatal angiogenesis. However, uPAR its involvement in the regulation of the properties of vascular progenitor cells remains poorly studied.
   Aim: to evaluate uPAR expression on the surface of resident cardiac vascular progenitor cells (rcVPCs) and its impact on angiogenic cell properties in vitro as well as postinfarction cardiac vascularization.
   Materials and Methods. We used immunofluorescent analysis of cryosections of a murine myocardial infarction model to characterize vessels and rcVPCs, and evaluatedв the angiogenic properties potential of vasculogenic progenitor cells using the «tube assay» and induction ofinducing differentiation in a specialized medium.
   Results. We have found that the majority of Sca-1+ rcVPCs express the urokinase receptor and endothelial cell markers on their surface and are capable of proliferation and integration into the newly formed vessels in the injured area, indicating their possible involvement in thecontribution to vascularization process after infarction. After acute ischemic injury, the accumulation of vasculogenic progenitor cells (8+2 and 27+7 cells per visual field, respectively; P = 0.032) and vascularization processes (85+11 and 166+25 capillaries per visual field, respectively; P = 0.033) were observed in myocardium of uPAR-/- animals, compared with wild-type animals. Our studies demonstrated that Sca-1+ rcVCPs derived from uPAR-/- murine hearts demonstrated a reduced ability to form capillary-like structures and endothelial differentiation compared with Sca-1+ rcVCPs from hearts of wild-type mice.
   Conclusion. Thus, uPAR deficiency may lead to impaired vasculogenic properties of Sca-1+ rcVCPs, which is likely due to the loss of regulatory influence of specific ligands and the ability to interact with signaling mediators such as integrins. From the viewpoint of regenerative medicine, the modulation of uPAR activity can be considered as a potential targetpromising approach for targeted regulation of vasculogenic progenitor cells properties and postnatal angiogenesis.

Highlight

   The urokinase-type plasminogen activator receptor is involved in the regulation of the angiogenic properties of Sca1+ vasculogenic progenitor cells.

About the Authors

К. V. Dergilev
National Medical Research Center for Cardiology, Ministry of Health of Russia; University of Florida
Russian Federation

Кonstantin V. Dergilev

Experimental Cardiology Institute

Laboratory of Angiogenesis

121552

15a Cherepkovskaya 3rd Str.

Moscow

College of Medicine

Department of Medicine

Center for Regenerative Medicine

1600 SW Archer Rd

USA

FL 32610

AM421 Gainesville



Z. I. Tsokolaeva
National Medical Research Center for Cardiology, Ministry of Health of Russia; Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

Zoya I. Tsokolaeva

Experimental Cardiology Institute

Laboratory of Angiogenesis

121552

15a Cherepkovskaya 3rd Str.

 V. A. Negovsky Research Institute of General Reanimatology

107031

25 Petrovka Str., Bldg. 2

Moscow



I. B. Beloglazova
National Medical Research Center for Cardiology, Ministry of Health of Russia
Russian Federation

Irina B. Beloglazova

Experimental Cardiology Institute

Laboratory of Angiogenesis

121552

15a Cherepkovskaya 3rd Str.

Moscow



Yu. D. Vasilets
National Medical Research Center for Cardiology, Ministry of Health of Russia
Russian Federation

Yuliya D. Vasilets

Experimental Cardiology Institute

Laboratory of Angiogenesis

121552

15a Cherepkovskaya 3rd Str.

Moscow



D. O. Traktuev
University of Florida
United States

Dmitry O. Traktuev

College of Medicine

Department of Medicine

Center for Regenerative Medicine

1600 SW Archer Rd

USA

FL 32610

AM421 Gainesville



N. B. Kulbitsky
Research Institute of Human Morphology; Peoples Friendship University of Russia
Russian Federation

117418

3 Tsyurupy Str.

117198

6 Miklukho-Maklaya Str.

Moscow



E. V. Parfenova
National Medical Research Center for Cardiology, Ministry of Health of Russia; Lomonosov Moscow State University
Russian Federation

Elena V. Parfenova

Experimental Cardiology Institute

Laboratory of Angiogenesis

121552

15a Cherepkovskaya 3rd Str.

Fundamental Medicine Department

Laboratory of Postgenomic Technologies in Medicine

119192

27 Lomonosovsky Ave., Bldg. 1

Moscow



References

1. Arjmand B., Abedi M., Arabi M., Alavi-Moghadam S., Rezaei-Tavirani M., Hadavandkhani M., Tayanloo-Beik A., Kordi R., Roudsari P. P., Larijani B. Regenerative Medicine for the Treatment of Ischemic Heart Disease; Status and Future Perspectives. Front Cell Dev Biol. 2021; 9: 704903. DOI: 10.3389/fcell.2021.704903.

2. Vidal-Calés P., Cepas-Guillén P. L., Brugaletta S., Sabaté M. New Interventional Therapies beyond Stenting to Treat ST-Segment Elevation Acute Myocardial Infarction. J Cardiovasc Dev Dis. 2021; 8 (9): 100. DOI: 10.3390/jcdd8090100.

3. Viola M., de Jager S. C. A., Sluijter J. P. G. Targeting Inflammation after Myocardial Infarction: A Therapeutic Opportunity for Extracellular Vesicles? Int J Mol Sci. 2021; 22 (15): 7831. DOI: 10.3390/ijms22157831.

4. He L., Huang X., Kanisicak O., Li Yi., Wang Y., Li Y., Pu W., Liu Q., Zhang H., Tian X., Zhao H., Liu X., Zhang S., Nie Yu., Hu S., Miao X., Dong Wang Q., Wang F., Chen T., Xu Q., Lui K., Molkentin J. D, Zhou B. Preexisting endothelial cells mediate cardiac neovascularization after injury. J Clin Invest. 2017. DOI: 10.1172/JCI93868. PMID: 2865034. PMID: 28650345. PMCID: PMC5531398.

5. Дергилев К. В. Характеристика ангиогенных свойств с-kit+ клеток миокарда / К. В. Дергилев [и др.] // Гены и клетки. – 2018. – 14 (3): 86–93. DOI: 10.23868/201811038.

6. Scalise M., Marino F., Cianflone E., Mancuso T., Marotta P., Aquila I., Torella M., Nadal-Ginard B., Torella D. Heterogeneity of Adult Cardiac Stem Cells. Adv Exp Med Biol. 2019; 1169: 141–178. DOI: 10.1007/978-3-030-24108-7_8. PMID: 31487023.

7. Bhartiya D., Flora Y., Sharma D., Mohammad S. A. Two Stem Cell Populations Including VSELs and CSCs Detected in the Pericardium of Adult Mouse Heart. Stem Cell Rev Rep. 2021; 17 (2): 685–693. DOI: 10.1007/s12015-021-10119-9.

8. Iancu C. B., Iancu D., Renţea I., Hostiuc S., Dermengiu D., Rusu M. C. Molecular signatures of cardiac stem cells. Rom J Morphol Embryol. 2015; 56 (4): 1255–1262. PMID: 26743269.

9. Santi L. A., Napolitano F., Montuori N., Ragno P. The Urokinase Recep-tor: A Multifunctional Receptor in Cancer Cell Biology. Therapeutic Implications. Int J Mol Sci. 2021; 22 (8): 4111. DOI: 10.3390/ijms22084111. PMID: 33923400. PMCID: PMC8073738.

10. Dergilev K. V., Stepanova V. V., Beloglazova I. B., Tsokolayev Z. I., Parfenova E. V. Multifaced Roles of the Urokinase System in the Regulation of Stem Cell Niches. Acta Naturae. 2018; 10 (4): 19–32. PMID: 30713759. PMCID: PMC6351041.

11. Baart V. M., Houvast R. D., de Geus-Oei L. F., Quax P. H. A., Kuppen P. J. K., Vahrmeijer A. L, Sier C. F. M. Molecular imaging of the urokinase plasminogen activator receptor: opportunities beyond cancer. EJNMMI Res. 2020; 10 (1): 87. DOI: 10.1186/s13550-020-00673-7. PMID: 32725278. PMCID: PMC7387399.

12. Dewerchin M., Nuffelen A. V., Wallays G., Bouché A., Moons L., Carmeliet P., Mulligan R. C., Collen D. Generation and characterization of urokinase receptor-deficient mice. J Clin Invest. 1996; 97 (3): 870–878. PMID: 8609247. PMCID: PMC507128. DOI: 10.1172/JCI118489.

13. Dergilev K. V., Tsokolaeva Z. I., Beloglazova I. B., Ratner E. I., Molokotina Yu. D., Parfenova E. V. Angiogenic properties of myocardial c-kit+ cells. Genes & Cells. 2018; 13 (3): 82–88. DOI: 10.23868/201811038.

14. Xiao Q., Zeng L., Zhang Z., Margariti A., Ali Z. A., Channon K. M., Xu Q., Hu Y. Sca-1+ progenitors derived from embryonic stem cells differentiate into endothelial cells capable of vascular repair after arterial injury. Arterioscler Thromb Vasc Biol. 2006; 26 (10): 2244–2251. DOI: 10.1161/01.ATV.0000240251.50215.50.

15. Dergilev K. V., Tsokolaeva Z. I., Beloglazova I. B., Zubkova E. S., Ratner E. I., Molokotina Y. D., Parfenova E. V. Urokinase Receptor Regulates Adhesion of Progenitor Cardiac Cells to Vitronectin. Bull Exp Biol Med. 2019; 167 (3): 315–319. DOI: 10.1007/s10517-019-04517-w. PMID: 31346863.

16. Li Santi A., Napolitano F., Montuori N., Ragno P. The Urokinase Receptor: A Multifunctional Receptor in Cancer Cell Biology. Therapeutic Implications. Int J Mol Sci. 2021; 22 (8): 4111. DOI: 10.3390/ijms22084111.

17. Jia C., Malone H. M., Keasey M. P., Lovins C., Elam J., Hagg T. Blood Vitronectin Induces Detrimental Brain Interleukin-6 and Correlates With Outcomes After Stroke Only in Female Mice. Stroke. 2020; 51 (5): 1587–1595. DOI: 10.1161/STROKEAHA.120.029036.

18. Keasey M. P., Jia C., Pimentel L. F., Sante R. R., Lovins C., Hagg T. Blood vitronectin is a major activator of LIF and IL-6 in the brain through integrin-FAK and uPAR signaling. J Cell Sci. 2018; 131 (3): jcs202580. DOI: 10.1242/jcs.202580.

19. Napolitano F., Montuori N. The Role of the Plasminogen Activation System in Angioedema: Novel Insights on the Pathogenesis. J Clin Med. 2021; 10 (3): 518. DOI: 10.3390/jcm10030518.

20. Gorrasi A., Petrone A. M., Li Santi A., Alfieri M., Montuori N., Ragno P. New Pieces in the Puzzle of uPAR Role in Cell Migration Mechanisms. Cells. 2020; 9 (12): 2531. DOI: 10.3390/cells9122531.

21. Heydarkhan-Hagvall S., Gluck J. M., Delman C., Jung M., Ehsani N., Full S., Shemin R. J. The effect of vitronectin on the differentiation of embryonic stem cells in a 3D culture system. Biomaterials. 2012 (7): 2032–2040. DOI: 10.1016/j.biomaterials.2011.11.065. PMID: 22169822. PMCID: PMC7731733.

22. Ferraris G. M., Schulte C., Buttiglione V., De Lorenzi V., Piontini A., Galluzzi M., Podestà A., Madsen C. D., Sidenius N. The interaction between uPAR and vitronectin triggers ligand-independent adhesion signalling by integrins. EMBO J. 2014; 33 (21): 2458–2472. DOI: 10.15252/embj.201387611. PMID: 25168639.

23. Chillà A., Margheri F., Biagioni A., Del Rosso M., Fibbi G., Laurenzana A. Mature and progenitor endothelial cells perform angiogenesis also under protease inhibition: the amoeboid angiogenesis. J Exp Clin Cancer Res. 2018; 37 (1): 74. DOI: 10.1186/s13046-018-0742-2.

24. Manetti M., Rosa I., Fazi M., Guiducci S., Carmeliet P., Ibba-Manneschi L., Matucci-Cerinic M. Systemic sclerosis-like histopathological features in the myocardium of uPAR-deficient mice. Ann Rheum Dis. 2016; 75 (2): 474–478. DOI: 10.1136/annrheumdis-2015-207803 PMID: 26269399.

25. Manetti M., Rosa I., Milia A. F., Guiducci S., Carmeliet P., Ibba-Manneschi L., Matucci-Cerinic M. Inactivation of urokinase-type plasminogen activator receptor (uPAR) gene induces dermal and pulmonary fibrosis and peripheral microvasculopathy in mice: a new model of experimental scleroderma? Ann Rheum Dis. 2014; 73 (9): 1700–1709. DOI: 10.1136/annrheumdis-2013-203706. PMID: 23852693.

26. D’Alessio S., Fibbi G., Cinelli M., Guiducci S., Del Rosso A., Margheri F., Serratì S., Pucci M., Kahaleh B., Fan P., Annunziato F., Cosmi L., Liotta F., Matucci-Cerinic M., Del Rosso M. Matrix metalloproteinase 12-dependent cleavage of urokinase receptor in systemic sclerosis microvascular endothelial cells results in impaired angiogenesis. Arthritis Rheum. 2004; 50 (10): 3275–3285. DOI: 10.1002/art.20562. PMID: 15476218.

27. Serratì S., Cinelli M., Margheri F., Guiducci S., Del Rosso A., Pucci M., Fibbi G., Bazzichi L., Bombardieri S., Matucci-Cerinic M., Del Rosso M. Systemic sclerosis fibroblasts inhibit in vitro angiogenesis by MMP-12-dependent cleavage of the endothelial cell urokinase receptor. J Pathol. 2006; 210 (2): 240–248. DOI: 10.1002/path.2048. PMID: 16917801.

28. Margheri F., Luciani C., Taddei M. L., Giannoni E., Laurenzana A., Biagioni A., Chillà A., Chiarugi P., Fibbi G., Del Rosso M. The receptor for urokinase-plasminogen activator (uPAR) controls plasticity of cancer cell movement in mesenchymal and amoeboid migration style. Oncotarget. 2014 30; 5 (6): 1538–1553. DOI: 10.18632/oncotarget.1754. PMID: 24681666.

29. Bernstein A. M., Twining S. S., Warejcka D. J., Tall E., Masur S. K. Urokinase receptor cleavage: a crucial step in fibroblast-to-myofibroblast differentiation. Mol Biol Cell. 2007; 18 (7): 2716–2727. DOI: 10.1091/mbc.e06-10-0912. PMID: 17507651.

30. Bernstein A. M., Greenberg R. S., Taliana L., Masur S. K. Urokinase anchors uPAR to the actin cytoskeleton. Invest Ophthalmol Vis Sci. 2004; 45 (9): 2967–2977. DOI: 10.1167/iovs.04-0030. PMID: 15326109.


Review

For citations:


Dergilev К.V., Tsokolaeva Z.I., Beloglazova I.B., Vasilets Yu.D., Traktuev D.O., Kulbitsky N.B., Parfenova E.V. Role of Urokinase-Type Plasminogen Activator Receptor in the Regulation of Angiogenic Properties of Sca1+ Vasculogenic Progenitor Cells. General Reanimatology. 2022;18(2):76-82. https://doi.org/10.15360/1813-9779-2022-2-76-82

Views: 632


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)