Preview

General Reanimatology

Advanced search

The Efficacy and Safety of Automatic Modes During Respiratory Support After Cardiac Surgery

https://doi.org/10.15360/1813-9779-2022-3-21-29

Abstract

Aims. To compare the efficacy and safety of semiautonomous Adaptive Support Ventilation (ASV) and fully automated (closed-loop, Intellivent-ASV) mechanical ventilation and oxygenation versus conventional mechanical ventilation mode during respiratory support in cardiac surgery patients.

Material and methods. In this study, 40 adult patients were ventilated by conventional mechanical ventilation managed by 8 physicians (control group), whereas other two groups patients were ventilated by Intellivent-ASV (n=40) or in a semiautomatic ASV mode (n=40). The groups received standard care, except for the modes of ventilation.

Results. In the Intellivent-ASV group, the number of manual changes in ventilator settings was significantly lower: 0 (0–0) versus 2 (2–3) (ASV) and 4 (3–5) in the control group (P<0.0001). There were significant differences in the duration of respiratory support in ICU which was 226±31 min (Intellivent group) vs 259±66 (ASV) and 271±78 min (control) (P=0.0042; P1–2=0.0167; P1–3=0.009). The Intellivent-ASV group patients received more protective ventilation than patients in the semiautomated and physician-controlled groups (lower values of driving pressure (6 (6–7) cm H2O vs. 6 (6–7) and 7 (7–9) cm H2O (P<0.0001)), tidal volume (6 (6–7) vs. 7 (7–7.7) and 7 (7–8) ml/kg/PBW (P<0.0001)), FiO2 (26 (24–30)% vs. 34 (30–35)% and 34 (30–38)%) with no differences between the groups in paO2/FiO2. There were no significant differences between the groups in frequency of undesirable events and duration of ICU stay.

Conclusion. The use of intelligent technologies makes it possible to interactively individualize respiratory support, significantly reducing clinician's involvement in this process without compromising patient safety and the quality of ventilation.

About the Authors

A. A. Yeremenko
B.V. Petrovsky Russian Research Center for Surgery
Russian Federation

Alexander A. Yeremenko

2 Abrikosov Lane, 119435 Moscow



R. D. Komnov
B.V. Petrovsky Russian Research Center for Surgery
Russian Federation

Roman D. Komnov

2 Abrikosov Lane, 119435 Moscow



E. A. Koshek
B.V. Petrovsky Russian Research Center for Surgery
Russian Federation

Ekaterina A. Koshek

2 Abrikosov Lane, 119435 Moscow



References

1. Gregory A.J., Engelman D.T., Williams J.B. Cardiac Surgery ERAS p 488. In book O. Ljungqvist, N.K. Francis, R. D. Urman Enhanced recovery after surgery: a complete guide to optimizing outcomes. Cham; Springer Nature Switzerland AG; 2020. DOI: 10.1007/978-3-030-33443-7 ISBN 978-3-030-33442-0.

2. Dabbagh A., Esmailian F., Aranki S. Postoperative critical care for adult cardiac surgical patients. Second edition, Cham; Springer International Publishing AG, part of Springer Nature; 2018. DOI: 10.1007/978-3-319-75747-6 ISBN 978-3-319-75746-9.

3. Chatburn R.L., Mireles-Cabodevila E. Closed-loop control of mechanical ventilation: description and classification of targeting schemes. Respiratory Care. 2011; 56 (1): 85–102. DOI: 10.4187/respcare.00967. PMID: 21235841.

4. Serpa Neto A., Simonis F.D., Schultz M.J. How to ventilate patients without acute respiratory distress syndrome? Curr Opin Crit Care. 2015; 21: 65–73. DOI: 10.1097/MCC.0000000000000165. PMID: 25501019.

5. Кассиль В.Л. Интеллектуальные методы ИВЛ и ВВЛ. В книге В.Л. Кассиль, А.А. Еременко, Ю.Ю. Сапичева, М. А, Выжигина: Принципы механической вентиляции легких в интенсивной терапии. М.: МЕДпресс-информ; 2017: 225-228. ISBN 978-5-00030-507-2.

6. Otis A.B., Fenn W.O., Rahn H. Mechanics of breathing in man. J Appl Physiol.1950; 2: 592–607. DOI: 10.1152/jappl.1950.2.11.592. PMID: 15436363.

7. Mead J., Turner J.M., Macklem P.T., Little J.B. Significance of the relationship between lung recoil and maximum expiratory flow. J Appl Physiol. 1960; 22 (1): 95–108. DOI: 10.1152/jappl.1967.22.1.95. PMID: 6017658.

8. Belliato M. Automated weaning from mechanical ventilation. World J Respirol. 2016; 6 (2): 49–53. DOI: 10.5320/wjr.v6.i2.49.

9. Arnal J-M., Garnero A., Novonti D., Demory D., Ducros L., Berric A., Donati S.Y., Corno G., Jaber S., Durand-Gasselin J. Feasibility study on full closed-loop control ventilation (Intellivent-ASV) in ICU patients with acute respiratory failure: a prospective observational comparative study. Critical Care. 2013; 17: R196. PMID: 24025234. DOI: 10.1186/cc12890.

10. Arnal J.M., Garnero A., Novotni D., Corno G., Donati S.Y., Demory D., Quintana G., Ducros L., Laubscher T., Durand-Gasselin J. Сlosed loop ventilation mode in Intensive Care Unit: a randomized controlled clinical trial comparing the numbers of manual ventilator setting changes. Minerva Anestesiologica. 2018; 84 (1): 58–67. DOI: 10.23736/S0375-9393.17.11963-2. PMID: 28679200.

11. Arnal J-M., Saoli M., Aude Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by IntelliventASV in passive, mechanically ventilated ICU patients. Heart Lung. 2020; 49 (4): 427–434. DOI: 10.1016/j.hrtlng.2019.11.001. PMID: 31733881.

12. Bialais E., Wittebole X., Vignaux L., Roeseler J., Wysocki M., Meyer J., Reychler G., Novotni D., Sottiaux T., Laterre P.F., Hantson P. Closed-loop ventilation mode (IntelliVent® -ASV) in intensive care unit: a randomized trial. Minerva Anestesiol. 2016; 82: 657–668. PMID 26957117.

13. Beijers A.J., Roos A.N., Bindels A.J. Fully automated closed-loop ventilation is safe and effective in post-cardiac surgery patients. Intensive Care Med. 2014; 40 (5): 752–753. DOI: 10.1007/s00134-014-3234-7. PMID 24577110.

14. Lellouche F., Bouchard P.A., Simard S., L’Her E., Wysocki M. Evaluation of fully automated ventilation: a randomized controlled study in post-cardiac surgery patients. Intensive Care Medicine. 2013; 3: 463–471. DOI: 10.1007/s00134-012-2799-2. PMID: 23338569.

15. Fot E.V., Izotova N.N., Yudina A.S., Smetkin A.A., Kuzkov V.V., Kirov M.Y. Automated weaning from mechanical ventilation after offpump coronary artery bypass grafting. Front Med (Lausanne). 2017; 4: 31. DOI: 10.3389/fmed.2017.00031. PMID 28377920.

16. Gruber P.C., Gomersall C.D., Leung P., Joynt G.M., Ng S.K., Ho K.M., Underwood M.J. Randomized controlled trial comparing adaptive-support ventilation with pressure-regulated volume-controlled ventilation with automode in weaning patients after cardiac surgery. Anesthesiology. 2008; 109 (1): 81–87. DOI: 10.1097/ALN.0b013e31817881fc. PMID: 18580176.

17. Zhu F., Gomersall C.D., Ng S.K., Underwood M.J., Lee A. A randomized controlled trial of adaptive support ventilation mode to wean patients after fast-track cardiac valvular surgery. Anesthesiology. 2015; 122 (4): 832–840. DOI: 10.1097/ALN.0000000000000589. PMID: 25569810.

18. Yazdannik A., Zarei H., Massoumi G. Comparing the effects of adaptive support ventilation and synchronized intermittent mandatory ventilation on intubation duration and hospital stay after coronary artery bypass graft surgery. Iran Journal of Nursing and Midwifery Research. 2016; 21 (2): 207–212. DOI: 10.4103/1735-9066.178250. PMID: 27095997.

19. Tam M.K.P., Wong W.T., Gomersall C.D., Tian Q., Ng S.K., Leung C.C.H., Underwood M.J. A randomized controlled trial of 2 protocols for weaning cardiac surgical patients receiving adaptive support ventilation. J Crit Care. 2016; 33: 163–168. DOI: 10.1016/j.jcrc.2016.01.018. PMID: 27006266.

20. Еременко А.А., Комнов Р.Д. Интеллектуальный режим аппаратной вентиляции легких при ранней активизации кардиохирургических пациентов. Общая реаниматология. 2020; 16 (1): 4–15. DOI: 10.15360/1813-9779-2020-1-4-15.

21. MacIntyre N.R., Cook D.J., Ely E.W.Jr., Epstein S.K., Fink J.B., Heffner J.E., Hess D., Hubmayer R.D., Scheinhorn D.J. Evidence-based guidelines for weaning and discontinuing ventilatory support: a collective Task Force facilitated by the American College of Chest Physicians, the American Association for Respiratory Care, and the American College of Critical Care Medicine. Chest. 2001; 120 (6): 375S–95S. DOI: 10.1378/chest.120.6_suppl.375S. PMID: 11742959.

22. Silva P.L., Macedo Rocco P.R., Pelosi P. Ten reasons to use mechanical power to guide ventilator settings in patients without ARDS. In book: Annual update in intensive care and emergency medicine 2020 Cham. Springer Nature Switzerland AG; 2020. DOI: 10.1007/978-3-030-37323-8_3. ISBN 978-3-030-73230-1.

23. Becher T., van der Staay M., Schädler D., Frerichs I., Weiler N. Calculation of mechanical power for pressure-controlled ventilation. Intensive Care Med. 2019; 45 (9): 1321–1323. DOI: 10.1007/s00134-019-05636-8. PMID: 31101961.

24. Putensen C., Muders T., Varelmann D., Wrigge H. The impact of spontaneous breathing during mechanical ventilation. Current Opinion in Critical Care. Lippincott Williams and Wilkins; 2006; 12 (1): 13–18. DOI: 10.1097/01.ccx.0000198994.37319.60. PMID: 16394778.

25. Pannu S.R., Dziadzko M.A., Gajic O. How much oxygen? Oxygen titration goals during mechanical ventilation. Am J Respir Crit Care Med. 2016; 193: 4–5. DOI: 10.1164/rccm.201509-1810ED. PMID: 26720783.

26. Panwar R., Hardie M., Bellomo R., Barrot L., Eastwood G.M., Young P.J., Capellier G., Harrigan P.W., Bailey M. Conservative versus liberal oxygenation targets for mechanically ventilated patients. A pilot multicenter randomized controlled trial. Am J Respir Crit Care Med. 2016; 193: 43–51. DOI: 10.1164/rccm.201505-1019OC. PMID: 26334785.


Review

For citations:


Yeremenko A.A., Komnov R.D., Koshek E.A. The Efficacy and Safety of Automatic Modes During Respiratory Support After Cardiac Surgery. General Reanimatology. 2022;18(3):21-29. https://doi.org/10.15360/1813-9779-2022-3-21-29

Views: 585


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)