Preview

General Reanimatology

Advanced search

The Effect of Erythrocyte-Containing Donor Blood Components in the Priming of the Cardiopulmonary Bypass Circuit on the Development of Systemic Inflammation During Correction of Congenital Heart Defects in Children

https://doi.org/10.15360/1813-9779-2022-3-30-37

Abstract

Various pathological factors accompanying any cardiac surgery can cause intraoperative systemic inflammatory responses (SIR). As the number of cardiac surgical interventions grows worldwide, the issue of SIR prevention appears highly relevant.

Aim of the study. To determine the effect of not using donor blood components in the priming of the cardiopulmonary bypass circuit in children with septal congenital heart defects, operated under cardiopulmonary bypass, on the severity of SIR.

Material and methods. A prospective, randomized study included 40 children with a median age of 14 [12–22.5] months and weight of 8.8 [7.25–11] kg. All patients underwent radical correction of septal defect under cardiopulmonary bypass. The patients were divided into two groups depending on the use of donor blood components for priming the CPB. The severity of SIR was assessed using four specific serum biomarkers such as interleukin 1b (IL-1b), interleukin 6 (IL-6), interleukin 10 (IL-10), and tumor necrosis factor alpha (TNF-α), measured before the operation, after the CPB and 16 hours after the surgery. In addition, the intra- and postoperative periods were evaluated.

Results. The safety of the proposed strategy of skipping the donor blood was confirmed by lack of any organ dysfunction in all patients, as well as a significant difference in the balance of oxygen delivery and consumption. In addition, the levels of systemic inflammation markers after CPB were significantly higher in patients who had transfusion: IL-1b was 3.3 [3.2–3.48] pg/mL vs 2.86 [2.7–3.11] pg/mL (P=0.003) and TNF-α reached 1.81 [1.37–3.3] pg/mL vs 1.33 [1.26–1.76] pg/mL (P=0.034). Meanwhile, 16 hours post surgery, IL-6 and IL-10 levels were significantly higher in the group using donor blood components with IL-6 being 48.91 [33.89–57.6] pg/mL vs 31.56 [26.83–48.89] pg/mL (P=0.087) and IL-10 reaching 0.8 [0.76–1.43] pg/mL vs 0.69 [0.6–0.83] pg/mL (P=0.005).

Conclusion. The study demonstrates and confirms the safety and efficacy of cardiopulmonary bypass without using donor blood components to reduce the severity of the systemic inflammatory response in children undergoing correction of septal congenital heart defects.

About the Authors

D. V. Borisenko
Research Institute of Complex Problems of Cardiovascular Disease
Russian Federation

Dmitry V. Borisenko

6 Sosnovy bulvar, 650002 Kemerovo



A. A. Ivkin
Research Institute of Complex Problems of Cardiovascular Disease
Russian Federation

Artem A. Ivkin

6 Sosnovy bulvar, 650002 Kemerovo



D. L. Shukevich
Research Institute of Complex Problems of Cardiovascular Disease
Russian Federation

Dmitry L. Shukevich

6 Sosnovy bulvar, 650002 Kemerovo



R. A. Kornelyuk
Research Institute of Complex Problems of Cardiovascular Disease
Russian Federation

Roman A. Kornelyuk

6 Sosnovy bulvar, 650002 Kemerovo



References

1. Botwinski C.A. Systemic inflammatory response syndrome. Neonatal Network. 2001; 20 (5): 21–28. DOI: 10.1891/0730-0832.20.5.21. PMID: 12144219.

2. Warren O.J, Smith A.J, Alexiou C., Rogers P.L.B, Jawad N., Vincent C., Darzi A.W., Athanasiou T. The inflammatory response to cardiopulmonary bypass: part 1-mechanisms of pathogenesis. Journal of Cardiothoracic and Vascular Anesthesia. 2009; 23: 223–231. DOI: 10.1053/j.jvca.2008.08.007. PMID: 18930659.

3. Wang Y., Lin X., Yue H., Kissoon N., Sun B. Evaluation of systemic inflammatory response syndrome-negative sepsis from a Chinese regional pediatric network. Collaborative Study Group for Pediatric Sepsis in Huai’an BMC Pediatric. 2019; 8; 19 (1): 11. DOI: 10.1186/s12887-018-1364-8.

4. Toomasian C.J., Aiello S.R., Drumright B.L., Major T.C., Bartlett R.H., Toomasian J.M. The effect of air exposure on leucocyte and cytokine activation in an in-vitro model of cardiotomy suction. Perfusion 2018; 33 (7): 538–545. DOI: 10.1177/0267659118766157. PMID: 29638199.

5. Guvener M., Korun O., Demirturk O.S. Risk factors for systemic inflammatory response after congenital cardiac surgery. J Card Surg. 2015; 30 (1): 92–96. DOI: 10.1111/jocs.12465. PMID: 25382731.

6. Boettcher W., Merkle F., Huebler M., Koster A., Schulz F., Kopitz M., Kuppe H., Lange P., Hetzer R. Transfusion-free cardiopulmonary bypass in Jehovah’s Witness patients weighing less than 5 kg. J Extra Corpor Technol. 2005; 37 (3): 282–285. PMID: 16350381.

7. Fudulu D.P., Gibbison B., Upton T., Stoica S.C., Caputo M., Lightman S., Angelini G.D. Corticosteroids in pediatric heart surgery: myth or reality. Front Pediatr. 2018; 6: 112. DOI: 10.3389/fped.2018.00112. PMID: 29732365.

8. Keski-Nisula J., Pesonen E., Olkkola K.T., Ahlroth T., Puntila J., Andersson S., Neuvonen P.J., Suominen P.K. High-dose methylprednisolone has no benefit over moderate dose for the correction of tetralogy of Fallot. Ann Thorac Surg. 2016; 102 (3): 870–876. DOI: 10.1016/j.athoracsur.2016.02.089. PMID: 27154159.

9. Dreher M., Glatz A.C., Kennedy A., Rosenthal T., Gaynor J.W. A singlecenter analysis of methylprednisolone use during pediatric cardiopulmonary bypass. J Extra Corpor Technol. 2015; 47 (3): 155–159. PMID: 26543249.

10. Xiong Y., Sun Y., Ji B., Liu J., Wang G., Zheng Z. Systematic review and meta-analysis of benefits and risks between normothermia and hypothermia during cardiopulmonary bypass in pediatric cardiac surgery. Paediatr Anaesth. 2015; 25 (2): 135–142. DOI: 10.1111/pan.12560. PMID: 25331483.

11. Stocker C.F., Shekerdemian L.S., Horton S.B., Lee K.J., Eyres R., D’Udekem Y., Brizard C.P. The influence of bypass temperature on the systemic inflammatory response and organ injury after pediatric open surgery: a randomized trial. J. Thorac Cardiovasc Surg. 2011; 142 (1): 174–180. DOI: 10.1016/j.jtcvs.2011.01.059. PMID: 21420106.

12. Bierer J., Stanzel R., Henderson M., Sett S., Horne D. Ultrafiltration in pediatric cardiac surgery review. World J Pediatr Congenit Heart Surg. 2019; 10 (6): 778–788. DOI: 10.1177/2150135119870176. PMID: 31701831.

13. Alexiou C., Tang A.A.T., Sheppard S.V., Smith D.C., Gibbs R., Livesey S.A., Monro J.L., Haw M.P. The effect of leucodepletion on leucocyte activation, pulmonary inflammation and respiratory index in surgery for coronary revascularisation: a prospective randomised study. Eur J Cardiothorac Surg. 2004; 26: 294–300. DOI: 10.1016/j.ejcts.2004.04.017. PMID: 15296886.

14. Delaney M., Stark P.C., Suh M., Triulzi D.J., Hess J.R., Steiner M.E., Stowell C.P., Sloan S.R. Massive transfusion in cardiac surgery: the impact of blood component ratios on clinical outcomes and survival. Anesth Analg. 2017; 124 (6): 1777–1782. DOI: 10.1213/ANE.0000000000001926. PMID: 28333704.

15. Smok B., Domagalski K., Pawłowska M. Diagnostic and prognostic value of IL-6 and sTREM-1 in SIRS and sepsis in children. Mediators Inflamm. 2020; 2020: 8201585. DOI: 10.1155/2020/8201585. PMID: 32655314.

16. Staples A., LeBlond R., Watkins S., Wong C., Brandt J. Validation of the revised Schwartz estimating equation in a predominantly nonCKD population. Pediatr Nephrol. 2010; 25: 2321–2326. DOI: 10.1007/s00467-010-1598-7. PMID: 20652327.

17. Трухачева Н. В. Математическая статистика в медико-биологических исследованиях с применением пакета Statistica. М.ГЭОТАР-Медиа. 2013: 379; ISBN 978-5-9704-2567-1.

18. Clark R.K., Lee E.V, Fish C.J., White R.F., Price W.J., Jonak Z.L., Feuerstein G.Z., Barone F.C. Development of tissue damage, inflammation and resolution following stroke: an immunohistochemical and quantitative planimetric study. Brain Research Bull. 1993; 31 (5): 565–572. DOI: 10.1016/0361-9230(93)90124-t.

19. Yao F.S.F., Tseng C.C.A., Ho C.Y.A., Levin S.K., Illner P. Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2004; 18 (5): 552–558. DOI: 10.1053/j.jvca.2004.07.007. PMID: 15578464.

20. Panch S.R., Montemayor-Garcia C., Klein H.G. Hemolytic transfusion reactions. N Engl J Med. 2019; 381 (2): 150–162. DOI: 10.1056/NEJMra1802338. PMID: 31291517.

21. Ferraris V.A., Ballert E.Q., Mahan A. The relationship between intraoperative blood transfusion and postoperative systemic inflammatory response syndrome. Am J Surg. 2013; 205 (4): 457-465. DOI: 10.1016/j.amjsurg.2012.07.042. PMID: 23414633.

22. Ивкин А.А., Борисенко Д.В., Цепокина А.В., Григорьев Е.В., Шукевич Д.Л. Отказ от эритроцитарной массы для заполнения аппарата искусственного кровообращения как основа периоперационной профилактики церебрального повреждения у детей при кардиохирургических операциях. Анестезиология и реаниматология. 2021; 4: 54–61. DOI: 10.17116/anaesthesiology202104154.

23. Boehne M., Sasse M., Karch A., Dziuba F., Horke A., Kaussen T., Mikolajczyk R., Beerbaum P., Jack T. Systemic inflammatory response syndrome after pediatric congenital heart surgery: Incidence, risk factors, and clinical outcome. J Card Surg. 2017; 32 (2): 116-125. DOI: 10.1111/jocs.12879. PMID: 27928843.

24. Mulder H.D., Augustijn Q.J., van Woensel J.B., Bos A.P., Juffermans N,P,, Wösten-van Asperen R.M. Incidence, risk factors, and outcome of transfusion-related acute lung injury in critically ill children: a retrospective study. J Crit Care. 2015; 30 (1): 55–59. DOI: 10.1016/j.jcrc.2014.10.005. PMID: 25457117.

25. Atwa Z.T., Abdel Wahed W.Y. Transfusion transmitted infections in frequently transfused thalassemic children living in Fayoum Governorate, Egypt: Current prevalence and risk factors. J Infect Public Health. 2017; 10 (6): 870–874. DOI: 10.1016/j.jiph.2017.02.012. PMID: 28292647.

26. Ивкин А.А., Григорьев Е.В., Цепокина А.В., Шукевич Д.Л. Послеоперационный делирий у детей при коррекции врожденных септальных пороков сердца. Вестник анестезиологии и реаниматологии. 2021; 18 (2): 62–68. DOI: 10.21292/2078-5658-2021-18-2-62-68.

27. Naguib A.N., Winch P.D., Tobias J.D., Simsic J., Hersey D., Nicol K., Preston T., Gomez D., McConnell P., Galantowicz M. A single-center strategy to minimize blood transfusion in neonates and children undergoing cardiac surgery. Paediatr Anaesth. 2015; 25 (5): 477–86. DOI: 10.1111/pan.12604. PMID: 25581204.

28. Ивкин А.А., Корнелюк Р.А., Борисенко Д.В., Нохрин А.В., Шукевич Д.Л. Искусственное кровообращение без использования компонентов донорской крови при операции на сердце у ребенка весом 8 кг: клинический случай. Патология кровообращения и кардиохирургия. 2018; 20 (2): 62–67. DOI: 10.21688/1681-3472-2018-2-63-67.


Review

For citations:


Borisenko D.V., Ivkin A.A., Shukevich D.L., Kornelyuk R.A. The Effect of Erythrocyte-Containing Donor Blood Components in the Priming of the Cardiopulmonary Bypass Circuit on the Development of Systemic Inflammation During Correction of Congenital Heart Defects in Children. General Reanimatology. 2022;18(3):30-37. https://doi.org/10.15360/1813-9779-2022-3-30-37

Views: 695


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)