Preview

General Reanimatology

Advanced search

Correction of the Elevated Blood Pressure in Patients Undergoing Robot-Assisted Radical Prostatectomy

https://doi.org/10.15360/1813-9779-2022-4-39-35

Abstract

The aim of the study was to evaluate the role of urapidil hydrochloride for the management of abnormal cardiovascular response in patients undergoing robot-assisted radical prostatectomy (RARP).

Material and methods. The total of 93 prostate cancer patients scheduled for elective RARP were included and randomized in two groups: urapidil (n=44) and standard anesthesia control group (n=49). Urapidil was used to control the elevated blood pressure intraoperatively. Central hemodynamic monitoring was performed at 5 steps of the surgery.

Results. In the control group, the step 2 of the procedure was associated with elevated mean blood pressure (by 24.3%, P=0.045) and increased total peripheral vascular resistance (by 46.6%, P=0.011) compared with step 1, while in the urapidil group no significant changes in these parameters were found. In the urapidil group, the blood pressure was lower by 20.2% (P=0.047), afterload by 36.9% (P=0.02) vs the control group values, whereas the cardiac output was higher by 22.2% (P=0.043). Placing patient in the steep Trendelenburg position (step 3) resulted in a 22.4% increase in stroke volume (P=0.38) in the control group and a 19.2% increase in stroke volume (P=0.049) in the urapidil group compared with the previous step. Cardiac output in the urapidil group was higher by 34% (P=0.002) and blood pressure and vascular resistance were lower by 24.4% (P=0.031) and 45.7% (P=0.001), respectively, vs the control group. At steps 4 and 5, gradual stabilization of the hemodynamic parameters and peripheral vascular tone with significantly smaller differences between the groups were revealed.

Conclusion. Urapidil was effective for maintaining central hemodynamic parameters in patients during robotic-assisted radical prostatectomy at step 2 of the procedure, avoiding blood pressure elevation at step 3 and significantly reducing the total peripheral vascular resistance compared with the control group.

About the Authors

A. S. Kazakov
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology; Spasokukotsky City Clinical Hospital, Moscow City Health Department
Russian Federation

Andrey S. Kazakov

25 Petrovka Str., Bldg. 2, 107031 Moscow

21 Vuchetich Str., 101234 Moscow



K. B. Kolontarev
Spasokukotsky City Clinical Hospital, Moscow City Health Department; A. I. Evdokimov Moscow State University of medicine and dentistry, Ministry of Health of Russia
Russian Federation

Konstantin B. Kolontarev

21 Vuchetich Str., 101234 Moscow

20 Delegatskaya Str., Build 1, 127473 Moscow



E. S. Gorelova
N. I. Pirogov Russian National Medical Research University, Ministry of Health of Russia
Russian Federation

Elena S. Gorelova

1 Ostrovityanov Str., 117997 Moscow



O. A. Grebenchikov
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

Oleg A. Grebenchikov

25 Petrovka Str., Bldg. 2, 107031 Moscow



References

1. Karagiotis T., Witt J.H., Jankowski T., Mendrek M., Wagner C., Schuette A., Liakos N., Rachubinski P., Urbanova K., Oelke M., Kachanov M., Leyh-Bannurah S.R. Two-year quality of life after robot-assisted radical prostatectomy according to pentafecta criteria and cancer of the prostate risk assessment (CAPRA-S). Sci Rep. 2022; 12 (1): 244. DOI: 10.1038/s41598-021-04289-2. PMID: 34997130.

2. Porpiglia F., Fiori C., Bertolo R., Manfredi M., Mele F., Checcucci E., De Luca S., Passera R., Scarpa R.M. Five-year outcomes for a prospective randomized controlled trial comparing laparoscopic and robotassisted radical prostatectomy. Eur Urol Focus. 2018; 4 (1): 80–86. DOI: 10.1016/j.euf.2016.11.007. PMID: 28753822.

3. Kapur A., Kapur V. Robotic surgery: anaesthesiologist's contemplation. Malays J Med Sci. 2020; 27 (3): 143–149. DOI: 10.21315/mjms2020. 27.3.15. PMID: 32684815.

4. Zeuzem-Lampert C., Groene P., Brummer V., Hofmann-Kiefer K. Kardiorespiratorische Effekte perioperativer Positionierungsmaßnahmen [Cardiorespiratory effects of perioperative positioning techniques]. (In German). Anaesthesist. 2019; 68 (12): 805–813. DOI: 10.1007/s00101-019-00674-9. PMID: 31713665.

5. Kilic O.F., Börgers A., Köhne W., Musch M., Kröpfl D., Groeben H. Effects of steep Trendelenburg position for robotic-assisted prostatectomies on intra- and extrathoracic airways in patients with or without chronic obstructive pulmonary disease. Br J Anaesth. 2015; 114 (1): 70–76. DOI: 10.1093/bja/aeu322. PMID: 25236948.

6. Küçüköztaş B., Ýyilikçi L., Ozbilgin S., Ozbilgin M., Ünek T., Ellidokuz H. The effects of different pressure pneumoperitoneum on the pulmonary mechanics and surgical satisfaction in the laparoscopic cholecystectomy. General reanimatology/Obshchaya reanimatologya. (in Russ.) 2021; 17 (6): 33–41. DOI: 10.15360/1813-9779-2021-6-33-41.

7. Lestar M., Gunnarsson L., Lagerstrand L., Wiklund P., Odeberg-Wernerman S. Hemodynamic perturbations during robot-assisted laparoscopic radical prostatectomy in 45° Trendelenburg position. Anesth Analg. 2011; 113 (5): 1069–1075. DOI: 10.1213/ANE.0b013e3182075d1f. PMID: 21233502.

8. Pawlik M.T., Prasser C., Zeman F., Harth M., Burger M., Denzinger S., Blecha S. Pronounced haemodynamic changes during and after robotic-assisted laparoscopic prostatectomy: a prospective observational study. BMJ Open. 2020; 10 (10): e038045. DOI: 10.1136/bmjopen-2020-038045. PMID: 33020097.

9. Choi E.M., Na S., Choi S.H., An J., Rha K.H., Oh Y.J. Comparison of volume-controlled and pressure-controlled ventilation in steep Trendelenburg position for robot-assisted laparoscopic radical prostatectomy. J Clin Anesth. 2011; 23 (3): 183–188. DOI: 10.1016/j.jclinane.2010. 08.006. PMID: 21377341.

10. Cao L., Yang Z., Qi L., Chen M. Robot-assisted and laparoscopic vs open radical prostatectomy in clinically localized prostate cancer: perioperative, functional, and oncological outcomes: a systematic review and meta-analysis. Medicine (Baltimore). 2019; 98 (22): e15770. DOI: 10.1097/MD.0000000000015770. PMID: 31145297.

11. Rajaram S.S., Desai N.K., Kalra A., Gajera M., Cavanaugh S.K., Brampton W., Young D., Harvey S., Rowan K. Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev. 2013; 2013 (2): CD003408. DOI: 10.1002/14651858.CD003408.pub3. PMID: 23450539.

12. Christensen C.R., Maatman T.K., Maatman T.J., Tran T.T. Examining clinical outcomes utilizing low-pressure pneumoperitoneum during robotic-assisted radical prostatectomy. J Robot Surg. 2016; 10 (3): 215–219. DOI: 10.1007/s11701-016-0570-3. PMID: 27059614.

13. Rohloff M., Cicic A., Christensen C., Maatman T.K., Lindberg J., Maatman T.J. Reduction in postoperative ileus rates utilizing lower pressure pneumoperitoneum in robotic-assisted radical prostatectomy. J Robot Surg. 2019; 13 (5): 671–674. DOI: 10.1007/s11701-018-00915-w. PMID: 30604275.

14. Meininger D., Westphal K., Bremerich D.H., Runkel H., Probst M., Zwissler B., Byhahn C. Effects of posture and prolonged pneumoperitoneum on hemodynamic parameters during laparoscopy. World J Surg. 2008; 32 (7): 1400–1405. DOI: 10.1007/s00268-007-9424-5. PMID: 18224479.

15. Rosendal C., Markin S., Hien M.D., Motsch J., Roggenbach J. Cardiac and hemodynamic consequences during capnoperitoneum and steep Trendelenburg positioning: lessons learned from robot-assisted laparoscopic prostatectomy. J Clin Anesth. 2014; 26 (5): 383–38-9. DOI: 10.1016/j.jclinane.2014.01.014. PMID: 25086483.

16. Falabella A., Moore-Jeffries E., Sullivan M.J., Nelson R., Lew M. Cardiac function during steep Trendelenburg position and CO2 pneumoperitoneum for robotic-assisted prostatectomy: a trans-oesophageal Doppler probe study. Int J Med Robot. 2007; 3 (4): 312–315. DOI: 10.1002/rcs.165. PMID: 18200624.

17. Haas S., Haese A., Goetz A.E., Kubitz J.C. Haemodynamics and cardiac function during robotic-assisted laparoscopic prostatectomy in steep Trendelenburg position. Int J Med Robot. 2011; 7 (4): 408–413. DOI: 10.1002/rcs.410. PMID: 21815239.

18. Hofer C.K., Zalunardo M.P., Klaghofer R., Spahr T., Pasch T., Zollinger A. Changes in intrathoracic blood volume associated with pneumoperitoneum and positioning. Acta Anaesthesiol Scand. 2002; 46 (3): 303–308. DOI: 10.1034/j.1399-6576.2002.t01-1-460313.x. PMID: 11939922.

19. Matanes E., Weissman A., Rivlin A., Lauterbach R., Amit A., Wiener Z., Lowenstein L. Effects of pneumoperitoneum and the steep Trendelenburg position on heart rate variability and cerebral oxygenation during robotic sacrocolpopexy. J Minim Invasive Gynecol. 2018; 25 (1): 70–75. DOI: 10.1016/j.jmig.2017.07.009. PMID: 28734974.

20. Høyer S., Mose F.H., Ekeløf P., Jensen J.B., Bech J.N. Hemodynamic, renal and hormonal effects of lung protective ventilation during robot-assisted radical prostatectomy, analysis of secondary outcomes from a randomized controlled trial. BMC Anesthesiol. 2021; 21 (1): 200. DOI: 10.1186/s12871-021-01401-x. PMID: 34348666.

21. Peard L., Goodwin J., Hensley P., Dugan A., Bylund J., Harris A.M. Examining and understanding value: the impact of preoperative characteristics, intraoperative variables, and postoperative complications on cost of robot-assisted laparoscopic radical prostatectomy. J Endourol. 2019; 33 (7): 541–548. DOI: 10.1089/end.2019.0066. PMID: 31017013.


Review

For citations:


Kazakov A.S., Kolontarev K.B., Gorelova E.S., Grebenchikov O.A. Correction of the Elevated Blood Pressure in Patients Undergoing Robot-Assisted Radical Prostatectomy. General Reanimatology. 2022;18(4):29-35. https://doi.org/10.15360/1813-9779-2022-4-39-35

Views: 453


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)