Comparing the Inspiratory Capacity Measurements Obtained by Incentive Spirometry and Ultrasonic Spirography in the Early Postoperative Period in Cardiac Surgery Patients
https://doi.org/10.15360/1813-9779-2023-1-2256
Abstract
Incentive spirometry is one of the most common methods used for respiratory rehabilitation in the early period after cardiac surgery. Inspiratory capacity values, obtained by a patient using spirometer, are not reliably trusted.
Objectives. To compare volumetric parameters measured with incentive spirometer and results obtained with bedside ultrasound-based spirometer to assure the feasibility of the use of incentive spirometry to assess the inspiratory capacity and effectiveness of postoperative respiratory rehabilitation.
Materials and methods. The study included 50 patients after elective cardiac surgery. Pulmonary rehabilitation involved the use of various respiratory therapy methods. Spirography was performed before and after each session. Both approaches were used simultaneously to obtain the spirometry maximum inspiratory capacity (SMIC) with a bedside ultrasonic spirography and maximum inspiratory capacity (MIC) index using an incentive spirometer. Patient’s discomfort and adverse events during the procedures were recorded.
Results. The absolute values of the MIC measured before and after each session by the two methods were dissimilar, however, the average increment values (6) did not show statistically significant differences. The correlation analysis revealed a strong positive statistically significant relationship between 6 SMIC and 6 MIC (R = 0.74 before the session, R = 0.79 after the session, R = 0.77 across the whole data set, P < 0.01), also consistent with the Bland–Altman analysis, evidencing that more than 95% of all values fell within ± 1.96 SD of the mean difference. The inspiratory spirometry method showed good diagnostic accuracy (sensitivity 87%, specificity 85%, area under the curve (AUC) 0.8 (95% CI: [0.76; 0.83]), P < 0.001). Refusals of procedure were more often documented with ultrasonic spirography.
Conclusion. The increment in the inspiratory capacity index measured with incentive spirometer shows good agreement with ultrasonic spirography measurements. Therefore, incentive spirometry can be reliably used to assess the effectiveness of respiratory rehabilitation interventions in cardiac surgery patients during early postoperative period.
About the Authors
A. A. EremenkoRussian Federation
Alexander A. Eremenko
2 Abrikosov Lane, 119435 Moscow
T. P. Zyulyaeva
Russian Federation
Tatiana P. Zyulyaeva
2 Abrikosov Lane, 119435 Moscow
D. V. Ryabova
Russian Federation
Daria V. Ryabova
2 Abrikosov Lane, 119435 Moscow
M. S. Grekova
Russian Federation
Marina S. Grekova
2 Abrikosov Lane, 119435 Moscow
A. P. Alferova
Russian Federation
Alina P. Alferova
2 Abrikosov Lane, 119435 Moscow
A. V. Goncharova
Russian Federation
Alevtina V. Goncharova
2 Abrikosov Lane, 119435 Moscow
O. O. Grin
Russian Federation
Sofia S. Dmitrieva
2 Abrikosov Lane, 119435 Moscow
S. S. Dmitrieva
Russian Federation
Sofia S. Dmitrieva
2 Abrikosov Lane, 119435 Moscow
A. S. Dmitrieva
Russian Federation
Alexander S. Petrov
2 Abrikosov Lane, 119435 Moscow
References
1. Bautin A.E., Kasherininov I.Yu., Latetin D.A., Mazurok V.A., Rubinchik V.E., Naymushin A.V., Marichev A.O., Gordeev M.L. Prevalence and causes of the postoperative acute respiratory failure in cardiac surgery. Ann Crit Care /Vestnik Intensivnoy Terapii. 2016; 4: 19–26. (In Russ.).
2. Faker A. A., Damag A., Norman T. Incidence and outcome of pulmonary complications after open cardiac surgery. Egypt J Chest Dis Tuberc 2013; 62 (4): 775–780. DOI: 10.1016/j.ejcdt. 2013.08.008.
3. Mathis M.R., Duggal N. M., Likosky D.S., Haft J. W., Douville N.J., Vaughn M.T., Maile M.D., Blank R.S., Colquhoun D.A., Strobel R.J., Janda A.M., Zhang M., Kheterpal S., Engoren M.S. Intraoperative mechanical ventilation and postoperative pulmonary complications after cardiac surgery. Anesthesiology. 2019; 131 (3): 1046–1062. DOI: 10.1097/ALN.0000000 000002909. PMID: 31403976.
4. Saffari N,H.N., Nasiri E, Mousavinasab S.N., Ghafari R., Soleimani A., Esmaeili R. Frequency rate of atelectasis in patients following coronary artery bypass graft and its associated factors at Mazandaran Heart Center in 2013–2014. Glob J Health Sci. 2015; 7 (7 Spec No): 97–105. DOI: 10.5539/gjhs. v7n7p97. PMID: 26153209.
5. Salukhov V.V., Kharitonov M.A., Makarevich A.M., V.A., Ivanov V.V., Chugunov A.A., Morozov M.A. Experience of using the «Bark Vibrolung» device in comprehensive treatment of community-acquired pneumonia. Bulletin of the Russian Military Medical Academy. Vestnik Rossiyskoy VoennoMeditsinskoy Akademii. 2021; 23 (1): 51–58. (in Russ.). DOI: 10.17816/brmma63576].
6. Tse J., Wada K., Wang Y., Coppolo D., Kushnarev V., Suggett J. Impact of oscillating positive expiratory pressure device use on post-discharge hospitalizations: a retrospective cohort study comparing patients with COPD or chronic bronchitis using the aerobika and acapella devices. Int J Chron Obstruct Pulmon Dis. 2020; 15: 2527–2538. DOI: 10.2147/COPD. S256866. PMID: 33116469.
7. Nicolini A., Cardini F., Landucci N., Lanata S., Ferrari-Bravo M., Barlascini C. Effectiveness of treatment with high-frequency chest wall oscillation in patients with bronchiectasis. BMC Pulm Med. 2013; 13: 21. DOI: 10.1186/1471-2466-1321. PMID: 23556995.
8. Lee A.L., Burge A.T., Holland A.E. Positive expiratory pressure therapy versus other airway clearance techniques for bronchiectasis. Cochrane Database Syst Rev. 2017; 9 (9): CD011699. DOI: 10.1002/14651858.CD011699.pub2. PMID: 28952156.
9. Cho Y. J., Ryu H., Lee J., Park I.K., Kim Y.T., Lee Y.H., Lee H, Hong D.M., Seo J.H., Bahk J.H., Y Jeon. A randomised controlled trial comparing incentive spirometry with the Acapella® device for physiotherapy after thoracoscopic lung resection surgery. Anaesthesia.2014; 69 (8): 891–898. DOI: 10.1111/anae.12750. PMID: 24845198.
10. Wheatley C.M., Baker S.E., Daines C.M., Phan H., Martinez M.G., Morgan W.J., Snyder E.M. Influence of the Vibralung Acoustical Percussor on pulmonary function and sputum expectoration in individuals with cystic fibrosis. Ther Adv Respir Dis. 2018; 12: 1753466618770997. DOI: 10.1177/1753 466618770997. PMID: 29697011.
11. Kozlov I.A., Dzybinskaya Y.V., Romanov A. A., Balandyuk A.Y. Correction of pulmonary oxygenizing dysfunction in the early activation of cardiosurgical patients. General Reanimatology / Obshchaya Reanimatologiya.2009; 2: 37–43. (In Russ.). DOI: 10.15360/18139779-2009-2-37.
12. Moore V.C. Spirometry: step by step. Breathe. 2012; 8 (3): 232–240. DOI: 10.1183/20734735.0021711.
13. Graham B.L, Steenbruggen I., Miller M.R., Barjaktarevic I.Z., Cooper B.G., Hall G.L., Hallstrand T.S., Kaminsky D.A., McCarthy K., McCormack M.C., Oropez C.E., Rosenfeld M., Stanojevic S., Swanney M.P., Thompson B.R. Standardization of spirometry 2019 update. An official American Thoracic Society and European Respiratory Society technical statement. Am J Respir Crit Care Med. 2019; 200 (8): e70–e88. DOI: 10.1164/rccm.201908-1590ST. PMID: 31613151.
14. Eremenko A.A., Zyulyaeva T.P., Kalinina A.А., Rozina N.A. Evaluation of vibroacoustic lung massage effectiveness in self-breathing patients after cardiosurgical operations. Clinical and Experimental Sursery. Petrovsky Journal/ Klinicheskaya i Eksperimentalnaya Khirurgiya. Zhurnal im. Akademika B.V. Petrovskogo. 2020; 8 (4): 126–134. (In Russ.). DOI: 10.33029/2308-1198-2020-84-126-134.
15. Eremenko AA, Ryabova D.V, Komnov R.D, Chervinskaya A.V. Effectiveness and safety evaluation of a cough stimulation device in early postoperative respiratory rehabilitation in cardiac surgery patients. Problems of Balneology, Physiotherapy and Exercise Therapy/ Voprosy Kurortologii, Fizioterapii, i Lechebnoi Fizicheskoi Kultury. 2021; 98 (6–2): 17–24. (In Russ.). DOI: 10.17116/kurort20219806217.
16. Eremenko A.A, Zyulyaeva T.P, Alferova A.P. Effectiveness of oscillating PEP-therapy in early period after cardiac surgery. Cardiology and Cardiovascular Surgery//Kardiologiya i Serdechno-Sosudistaya Khirurgiya. 2021; 14 (6): 477–482. (In Russ.). DOI: 10.17116/kardio202114061477.
17. Eremenko А.А., Zyulyaeva T.P., Ryabova D.V., Аlferova А.P. Comparative evaluation of vibratory physiotherapy methods in the early period after cardiac surgery. Messenger of Anesthesiology and Resuscitation/Vestnik Anesthesiologii i Reanimatologii. 2021; 18 (6): 80–89. (In Russ.). DOI: 10.21292/2078-5658-2021-18-6-80-89].
18. Giavarina D. Understanding bland altman analysis. Biochem Med (Zagreb). 2015; 25 (2): 141–151. DOI: 10.11613/BM.2015.015. PMID: 26110027.
19. Myles P.S., Cui J.I. Using the Bland–Altman method to measure agreement with repeated measures. Br J Anaesth. 2007; 99 (3): 309–311. DOI: 10.1093/bja/aem214. PMID: 17702826.
20. Linden A. Measuring diagnostic and predictive accuracy in disease management: an introduction to receiver operating characteristic (ROC) analysis. J Eval Clin Pract. 2006; 12 (2): 132–139. DOI: 10.1111/j.1365-2753.2005.00598.x PMID: 16579821.
21. Metz C. E. Basic principles of ROC analysis. Semin Nucl Med. 1978; 8 (4): 283–298. DOI: 10.1016/S0001-2998(78)80014-2. PMID: 112681.
22. Agostini P, Singh S. Incentive spirometry following thoracic surgery: what should we be doing? Physiotherapy. 2009; 95 (2): 76–82. DOI: 10.1016/j.physio.2008.11.003. PMID: 19627688.
23. Manapunsopee, S., Thanakiatpinyo, T., Wongkornrat, W., Chuaychoo, B., Thirapatarapong, W. Effectiveness of incentive spirometry on inspiratory muscle strength after coronary artery bypass graft surgery. Heart, Lung Circ. 2019; 29 (8): 1180–1186. DOI: 10.1016/j.hlc.2019.09.009. PMID: 31735684.
24. Alam M., Hussain S., Shehzad M.I., Mushtaq A., Rauf A., Ishaq S. Comparing the effect of incentive spirometry with Acapella on blood gases in physiotherapy after coronary artery bypass graft. Cureus. 2020; 12 (2): e6851. DOI: 10.7759/ cureus.6851. PMID: 32181086.
25. Dempsey T.M, Scanlon P.D. Pulmonary function tests for the generalist: a brief review. Mayo Clin Proc. 2018; 93 (6): 763–771. DOI: 10.1016/j.mayocp.2018.04.009. PMID: 29866281.
26. Nathan S.D., Wanger J., Zibrak J.D., Wencel M.L., Burg C., Stauffer J.L. Using forced vital capacity (FVC) in the clinic to monitor patients with idiopathic pulmonary fibrosis (IPF): pros and cons. Expert Rev Respir Med. 2021; 15 (2): 175–181. DOI: 10.1080/17476348.2020.1816831. PMID: 32985286.
27. Beningfield A., Jones A. Peri-operative chest physiotherapy for paediatric cardiac patients: a systematic review and meta-analysis. Physiotherapy. 2018; 104 (3): 251–263. DOI: 10.1016/j.physio.2017.08.011. PMID: 29361296.
28. Alwekhyan S.A., Alshraideh J.A., Yousef K.M., Hayajneh F. Nurse‐guided incentive spirometry use and postoperative pulmonary complications among cardiac surgery patients: a randomized controlled trial. Int J Nurs Pract. 2022; 28 (2): e13023. DOI: 10.1111/ijn.13023. PMID: 34676618.
Supplementary files
Review
For citations:
Eremenko A.A., Zyulyaeva T.P., Ryabova D.V., Grekova M.S., Alferova A.P., Goncharova A.V., Grin O.O., Dmitrieva S.S., Dmitrieva A.S. Comparing the Inspiratory Capacity Measurements Obtained by Incentive Spirometry and Ultrasonic Spirography in the Early Postoperative Period in Cardiac Surgery Patients. General Reanimatology. 2023;19(1):13-19. https://doi.org/10.15360/1813-9779-2023-1-2256