Respiratory Mechanics and Gas Exchange in Acute Respiratory Distress Syndrome Associated with COVID-19
https://doi.org/10.15360/1813-9779-2022-5-24-31
Abstract
Aim. To compare respiratory mechanics and gas exchange in patients with acute respiratory distress syndrome (ARDS) with and without COVID-19.
Material and methods. We examined 96 patients, who were divided into two groups. The main group included 48 patients with COVID-19-associated ARDS. The control group included 48 patients with ARDS not associated with COVID-19. Most characteristic patients were selected for the following baseline parameters: age, sex, SAPS II score, disease severity, plateau pressure (Pplateau), oxygenation index (PaO₂/FiO₂), and arterial-alveolar oxygen gradient (A-aO₂). Respiratory mechanics and gas exchange parameters assessed immediately after ARDS diagnosis and on days 1, 3 and 7 of treatment included arterial oxygen (PaO₂) and carbon dioxide (PaCO₂) pressure, tidal volume (Vt), respiratory rate (RR), respiratory minute volume (RMV), positive end expiratory pressure (PEEP), and Pplateau.
Results. Patients in the main group had higher Vt (9.7 vs. 5.1 ml/kg, P<0.001), RR (38 vs. 30 min-1, P<0.001), and RMV (27.7 vs. 10.5 l/min, P<0.001). Control group patients showed hypercapnia (PaCO₂ 43 vs. 38 mmHg, P<0.001), lower respiratory compliance (30 vs. 48 ml/cm H₂O, P<0.001) and ventilation ratio (VR) (1.5 vs. 2.0, P<0.01). Lower PEEP values were required for patients in the main group. However, despite the higher rate of tracheal intubation in the control group (50% vs 16.7%) in the initial period of intensive care, the proportion of patients receiving invasive lung ventilation was significantly higher in the main group (33.3% vs.14.6%) by day 7.
Conclusion. The initial phase (the first 7 days) of ARDS associated with COVID-19 is characterized by higher values of Vt, RR and RMV, as well as lung compliance vs «typical» ARDS with almost identical PaO₂/FiO₂ values.
About the Authors
R. A. IbadovUzbekistan
Ravshan A. Ibadov
10 Kichik Halka Yuli Str., Chilanzar district, 100115 Tashkent; Katartal settlement, Zangiata district, 111800 Tashkent region
D. M. Sabirov
Uzbekistan
Djurabay M. Sabirov
51 Parkent str., Mirzo Ulugbek district, 100007 Tashkent
S. Kh. Ibragimov
Uzbekistan
Sardor Kh. Ibragimov
10 Kichik Halka Yuli Str., Chilanzar district, 100115 Tashkent
B. B. Burkhonov
Uzbekistan
Bakhodir B. Burkhonov
10 Kichik Halka Yuli Str., Chilanzar district, 100115 Tashkent; Katartal settlement, Zangiata district, 111800 Tashkent region
R. R. Ibadov
Uzbekistan
Raufbek R. Ibadov
10 Kichik Halka Yuli Str., Chilanzar district, 100115 Tashkent; Katartal settlement, Zangiata district, 111800 Tashkent region
References
1. World Health Organization. Clinical management of COVID-19 - living guidance. 25 January 2021. WHO/2019-nCoV/clinical/2021.2. Available at: Living guidance for clinical management of COVID-19 (who.int).
2. Ge H., Pan Q., Zhou Y/, Xu P., Zhang L., Zhang J., Yi J., Yang C., Zhou Y., Liu L., Zhang Z. Lung mechanics of mechanically ventilated patients with COVID-19: analytics with high-granularity ventilator waveform data. Front Med (Lausanne). 2020; 7: 541. DOI: 10.3389/fmed.2020.00541. PMID: 32974375.
3. Gattinoni L., Chiumello D., Rossi S. COVID-19 pneumonia: ARDS or not? Crit Care. 2020; 24 (1): 154. DOI: 10.1186/s13054-020-02880-z. PMID: 32299472.
4. Navas-Blanco J.R., Dudaryk R. Management of respiratory distress syndrome due to COVID-19 infection. BMC Anesthesiol. 2020; 20 (1): 177. DOI: 10.1186/s12871-020-01095-7. PMID: 32689937.
5. Yang X., Yu Y., Xu J., Shu H., Xia J., Liu H., Wu Y., Zhang L., Yu Z., Fang M., Yu T., Wang Y., Pan S., Zou X., Yuan S., Shang Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020; 8 (5): 475–481. DOI: 10.1016/S2213-2600(20)30079-5. PMID: 32105632.
6. Alhazzani W., Møller M.H., Arabi Y.M., Loeb M., Gong M.N., Fan E., Oczkowski S., Levy M.M., Derde L., Dzierba A., Du B., Aboodi M., Wunsch H., Cecconi M., Koh Y., Chertow D.S., Maitland K., Alshamsi F., Belley-Cote E., Greco M., Laundy M., Morgan J.S., Kesecioglu J., McGeer A., Mermel L., Mammen M.J., Alexander P.E., Arrington A., Centofanti J.E., Citerio G., Baw B., Memish Z.A., Hammond N, Hayden F.G., Evans L., Rhodes A. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med. 2020; 46 (5): 854–887. DOI: 10.1007/s00134-020-06022-5. PMID: 32222812.
7. Matthay M.A., Aldrich J.M., Gotts J.E. Treatment for severe acute respiratory distress syndrome from COVID-19. Lancet Respir Med. 2020; 8 (5): 433–434. DOI: 10.1016/S2213-2600(20)30127-2. PMID: 32203709.
8. Ziehr D.R., Alladina J., Petri C.R., Maley J.H., Moskowitz A., Medoff B.D., Hibbert K.A., Thompson B.T., Hardin C.C. Respiratory pathophysiology of mechanically ventilated patients with COVID-19: a cohort study. Am J Respir Crit Care Med. 2020; 201 (12): 1560–1564. DOI: 10.1164/rccm.202004-1163LE. PMID: 32348678.
9. Lu S., Huang X., Liu R., Lan Y., Lei Y., Zeng F., Tang X., He H. Comparison of COVID-19 induced respiratory failure and typical ARDS: similarities and differences. Front Med (Lausanne). 2022; 9: 829771. DOI: 10.3389/fmed.2022.829771. PMID: 35712114/.
10. Li X., Ma X. Acute respiratory failure in COVID-19: is it «typical» ARDS? Crit Care. 2020; 24 (1): 198. DOI: 10.1186/s13054-020-02911-9. PMID: 32375845.
11. Gattinoni L., Chiumello D., Caironi P., Busana M., Romitti F., Brazzi L., Camporota L. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020; 46 (6): 1099–1102. DOI: 10.1007/s00134-020-06033-2. PMID: 32291463.
12. Lucchini A., Giani M., Isgrò S., Rona R., Foti G. The «helmet bundle»in COVID-19 patients undergoing non invasive ventilation. Intensive Crit Care Nurs. 2020; 58: 102859. DOI: 10.1016/j.iccn.2020.102859. PMID: 32249028.
13. Bösmüller H., Matter M., Fend F., Tzankov A. The pulmonary pathology of COVID-19. Virchows Arch. 2021; 478 (1): 137–150. DOI: 10.1007/s00428-021-03053-1. PMID: 33604758.
14. Ranieri V.M., Rubenfeld G.D., Thompson B.T., Ferguson N.D., Caldwell E., Fan E., Camporota L., Slutsky A.S., ARDS Definition Task Force. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012; 307 (23): 2526–2533. DOI: 10.1001/jama.2012.5669. PMID: 22797452.
15. Gattinoni L., Coppola S., Cressoni M., Busana M., Rossi S., Chiumello D. COVID-19 does not lead to a «typical» acute respiratory distress syndrome. Am J Respir Crit Care Med. 2020; 201 (10): 1299–1300. DOI: 10.1164/rccm.202003-0817LE. PMID: 32228035.
16. Goligher E.C., Ranieri V.M., Slutsky A.S. Is severe COVID-19 pneumonia a typical or atypical form of ARDS? And does it matter? Intensive Care Med. 2021; 47 (1): 83-85. DOI: 10.1007/s00134-020-06320-y. PMID: 33237346.
17. Goligher E.C., Costa E.L.V., Yarnell C.J., Brochard L.J., Stewart T.E., Tomlinson G., Brower R.G., Slutsky A.S., Amato M.P.B. Effect of lowering Vt on mortality in acute respiratory distress syndrome varies with respiratory system elastance. Am J Respir Crit Care Med. 2021; 203 (11): 1378–1385. DOI: 10.1164/rccm.202009-3536OC. PMID: 33439781.
18. Chen L., Del Sorbo L., Grieco D.L., Junhasavasdikul D., Rittayamai N., Soliman I., Sklar M.C., Rauseo M., Ferguson N.D., Fan E., Richard J.C.M., Brochard L. Potential for lung recruitment estimated by the recruitment-to-inflation ratio in acute respiratory distress syndrome. A clinical trial. Am J Respir Crit Care Med. 2020; 201 (2): 178–187. DOI: 10.1164/rccm.201902-0334OC. PMID: 31577153.
19. Panwar R., Madotto F., Laffey J.G., van Haren F.M.P. Compliance phenotypes in early acute respiratory distress syndrome before the COVID-19 pandemic. Am J Respir Crit Care Med. 2020; 202 (9): 1244–1252. DOI: 10.1164/rccm.202005-2046OC. PMID: 32805143.
20. Voennov O.V., Turentinov A.V., Mokrov K.V., Zubeev P.S., Abramov S.A. Clinical phenotypes of hypoxia in patients with COVID-19. General Reanimatology//Obshchaya reanimatologya. 2021. (in Russ.). DOI: 10.15360/1813-9779-2021-2-16-26. Corpus ID: 235505057.
21. Bos L.D.J., Paulus F., Vlaar A.P.J., Beenen L.F.M., Schultz M.J. Subphenotyping acute respiratory distress syndrome in patients with COVID-19: consequences for ventilator management. Ann Am Thorac Soc. 2020; 17 (9): 1161–1163. DOI: 10.1513/AnnalsATS.202004-376RL. PMID: 32396457.
22. Bhatraju P.K., Ghassemieh B.J., Nichols M., Kim R., Jerome K.R, Nalla A.K., Greninger A.L., Pipavath S., Wurfel M.M., Evans L., Kritek P.A., West T.E., Luks A., Gerbino A., Dale C.R., Goldman J.D., O'Mahony S., Mikacenic C. Covid-19 in critically ill patients in the Seattle region - case series. N Engl J Med. 2020; 382 (21): 2012–2022. DOI: 10.1056/NEJMoa2004500. PMID: 32227758.
23. Tan W., Xu D-Y., Xu M-J., Wang Z-F., Dai B., Li L.L., Zhao H-W., Wang W., Kang J. The efficacy and tolerance of prone positioning in non-intubation patients with acute hypoxemic respiratory failure and ARDS: a meta-analysis. Ther Adv Respir Dis. 2021; 15: 17534666211009407. DOI: 10.1177/17534666211009407. PMID: 33888007.
24. Alqahtani J.S., Mendes R.G., Aldhahir A., Rowley D., Al Ahmari M.D., Ntoumenopoulos G., Alghamdi S.M., Sreedharan J.K., Aldabayan Y.S., Oyelade T., Alrajeh A., Olivieri C., AlQuaimi M, Sullivan J., Almeshari M.A., Esquinas A. Global current practices of ventilatory support management in COVID-19 patients: an international survey. J Multidiscip Healthc. 2020; 13: 1635–1648. DOI: 10.2147/JMDH.S279031. PMID: 33239884.
25. Coppo A., Bellani G., Winterton D., Di Pierro M., Soria A., Faverio P., Cairo M., Mori S., Messinesi G., Contro E., Bonfanti P., Benini A., Valsecchi M.G., Antolin L., Fot G. Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study. Lancet Respir Med. 2020; 8 (8): 765–774. DOI: 10.1016/S2213-2600(20)30268-X. PMID: 32569585.
26. Yaroshetskiy, A.I., Avdeev, S.N., Politov, M.E. Nogtev P.V., Beresneva V.G., Sorokin u.D., Konanykhin V.D., Krasnoshchekova A.P., Merzhoeva Z.M., Tsareva N.A., Trushenko N.V., Mandel I.A., Yavorovskiy A.G. Potential for the lung recruitment and the risk of lung overdistension during 21 days of mechanical ventilation in patients with COVID-19 after noninvasive ventilation failure: the COVID-VENT observational trial. BMC Anesthesiol. 2022; 22 (1): 59. DOI: 10.1186/s12871-022-01600-0. PMID: 35246024.
Review
For citations:
Ibadov R.A., Sabirov D.M., Ibragimov S.Kh., Burkhonov B.B., Ibadov R.R. Respiratory Mechanics and Gas Exchange in Acute Respiratory Distress Syndrome Associated with COVID-19. General Reanimatology. 2022;18(5):24-31. https://doi.org/10.15360/1813-9779-2022-5-24-31