Preview

General Reanimatology

Advanced search

Experimental Study of Neuroprotective Properties of Inhaled Argon-Oxygen Mixture in a Photoinduced Ischemic Stroke Model

https://doi.org/10.15360/1813-9779-2023-3-46-53

Abstract

Acute ischemic stroke is a serious problem for healthcare systems worldwide. Searching for the optimal neuroprotector is a contemporary challenge. Various studies have demonstrated neuroprotective properties of argon in ischemic brain damage models. However, the published data are inconsistent.
The aim of the study was to evaluate the effect of 24-hour argon-oxygen mixture (Ar 70%/O 30%) inhalation on the severity of neurological deficit and the extent of brain damage in rats after a photoinduced ischemic stroke.
Material and methods. The experiments were carried out on male Wistar rats weighing 430–530 g (N=26). Focal ischemic stroke was modeled in the sensorimotor cortex of the rat brain using photochemically induced vascular thrombosis. The animals were randomly divided into 3 groups: sham procedure + N 70%/O 30% inhalation (SP, N=6); stroke + N 70%/O 30% inhalation (Stroke, N=10); Stroke + Ar 70%/O 30% inhalation (Stroke+iAr, N=10). The limb placement test (LPT) was used for neurological assessment during 14 days. Additionally, on day 14 after the stroke, brain MRI with lesion size morphometry was performed. Summarized for days 3,7 and 14 LPT scores were lower in the Stroke and Stroke + iAr groups as compared to the SP group.
Results. Statistically significant differences in LPT scores between SP, Stroke, and Stroke+iAr groups were revealed on day 3 post-stroke: (scores: 14 (13; 14), 6.5 (4; 8), and 5 (3; 8), respectively, P=0.027). However, there was no statistical difference between the Stroke and Stroke+iAr groups.
Conclusion. 24-hour inhalation of argon-oxygen mixture (Ar 70%/O₂ 30%) after stroke does not reduce the extent of brain damage or the severity of neurological deficit.

About the Authors

E. A. Boeva
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

 Ekatherine A. Boeva 

 25 Petrovka Str., Bldg. 2, 107031 Moscow, Russia 



D. N. Silachev
A.N. Belozersky Research Institute of Physical and Chemical Biology, M. V. Lomonosov Moscow State University
Russian Federation

 Denis N. Silachev 

 1 Leninskie gory, Bldg 40, 119992 Moscow, Russia 



E. I. Yakupova
A.N. Belozersky Research Institute of Physical and Chemical Biology, M. V. Lomonosov Moscow State University
Russian Federation

 Elmira I. Yakupova 

 1 Leninskie gory, Bldg 40, 119992 Moscow, Russia 



M. A. Milovanova
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

 Marina A. Milovanova 

 25 Petrovka Str., Bldg. 2, 107031 Moscow, Russia 



L. A. Varnakova
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology

 Lydia A. Varnakova 

 25 Petrovka Str., Bldg. 2, 107031 Moscow, Russia 



S. N. Kalabushev
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

 Sergey N. Kalabushev 

 25 Petrovka Str., Bldg. 2, 107031 Moscow, Russia 



S. O. Denisov
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology

 Sergey O. Denisov 

 25 Petrovka Str., Bldg. 2, 107031 Moscow, Russia 



V. V. Antonova
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

 Victoria V. Antonova 

 25 Petrovka Str., Bldg. 2, 107031 Moscow, Russia 



I. A. Ryzhkov
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

 Ivan A. Ryzhkov 

 25 Petrovka Str., Bldg. 2, 107031 Moscow, Russia 



K. N. Lapin
V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

 Konstantin N. Lapin 

 25 Petrovka Str., Bldg. 2, 107031 Moscow, Russia 



A. A. Grebenchikova
A.I. Evdokimov Moscow State University of medicine and dentistry, Ministry of Health of Russia
Russian Federation

 Alexandra A. Grebenchikova 

20 Delegatskaya Str., Build 1, 127473 Moscow, Russia 



References

1. Jurcau A., Simion A. Neuroinflammation in cerebral ischemia and ischemia/reperfusion injuries: from pathophysiology to therapeutic strategies. Int J Mol Sci. 2021; 23 (1): 14. DOI: 10.3390/ijms23010014. PMID: 35008440.

2. Cherpakov R.A., Grebenchikov O.A. Effect of lithium chloride concentration on its neuroprotective properties in ischemic stroke in rats. General Reanimatology /Obshchaya Reanimatologiya. 2021; 17 (5): 101–110. (In Russ.). DOI: 10.15360/1813-9779-2021-5-101-110

3. Paul S., Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: an overview of clinical and preclinical studies. Exp Neurol. 2021; 335: 113518. doi: 10.1016/j.expneurol.2020.113518. PMID: 33144066

4. Rabinstein A.A. Update on treatment of acute ischemic stroke. Continuum (Minneap Minn). 2020; 26 (2): 268–286. DOI: 10.1212/CON.0000000000000840. PMID: 32224752.

5. Campos-Pires R., Koziakova M., Yonis A., Pau A., Macdonald W., Harris K., Edge C.J. et al. Xenon protects against blast-induced traumatic brain injury in an in vitro model. J Neurotrauma. 2018; 35 (8): 1037–1044. DOI: 10.1089/neu.2017.5360. PMID: 29285980.

6. Campos-Pires R., Hirnet T., Valeo F., Ong B.E., Radyushkin K., Aldhoun J., Saville J. et al. Xenon improves long-term cognitive function, reduces neuronal loss and chronic neuroinflammation, and improves survival after traumatic brain injury in mice. Br J Anaesth. 2019; 123 (1): 60–73. DOI: 10.1016/j.bja.2019.02.032. PMID: 31122738

7. Filev A.D., Silachev D.N., Ryzhkov I.A., Lapin K.N., Babkina A.S., Grebenchikov O.A., Pisarev V.M. Effect of xenon treatment on gene expression in brain tissue after traumatic brain injury in rats. Brain Sci. 2021; 11 (7): 889. DOI: 10.3390/brainsci11070889. PMID: 34356124

8. Moro F., Fossi F., Magliocca A., Pascente R., Sammali E., Baldini F., Tolomeo D. et al. Efficacy of acute administration of inhaled argon on traumatic brain injury in mice. Br J Anaesth. 2021; 126 (1): 256–264. DOI: 10.1016/j.bja.2020.08.027. PMID: 32977957

9. Zhang M., Cui Y., Cheng Y., Wang Q., Sun H. The neuroprotective effect and possible therapeutic application of xenon in neurological diseases. J Neurosci Res. 2021; 99 (12): 3274–3283. DOI: 10.1002/jnr.24958. PMID: 34716615

10. Maze M., Laitio T. Neuroprotective properties of xenon. Mol Neurobiol. 2020; 57 (1): 118–124. DOI: 10.1007/s12035-019-01761-z. PMID: 31758401

11. Wang J., Li R., Peng Z., Hu B., Rao X., Li J. HMGB1 participates in LPS-induced acute lung injury by activating the AIM2 inflammasome in macrophages and inducing polarization of M1 macrophages via TLR2, TLR4, and RAGE/NF-kB signaling pathways. Int J Mol Med. 2020; 45 (1): 61–80. DOI: 10.3892/ijmm.2019.4402. PMID: 31746367.

12. Zewinger S., Reiser J., Jankowski V., Alansary D., Hahm E., Triem S., Klug M. et al. Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation. Nat Immunol. 2020; 21 (1): 30–41. DOI: 10.1038/s41590-019-0548-1. PMID: 31819254

13. Mitsui Y., Hou L., Huang X., Odegard K.C., Pereira L.M., Yuki K. Volatile anesthetic sevoflurane attenuates toll-like receptor 1/2 activation. Anesth Analg. 2020; 131 (2): 631–639. DOI: 10.1213/ANE.0000000000004741. PMID: 32149756

14. Brücken A., Kurnaz P., Bleilevens C., Derwall M., Weis J., Nolte K., Rossaint R. et al. Dose dependent neuroprotection of the noble gas argon after cardiac arrest in rats is not mediated by K (ATP)-channel opening. Resuscitation. 2014; 85 (6): 826–32. DOI: 10.1016/j.resuscitation.2014.02.014. PMID: 24582739.

15. Lemoine S., Blanchart K., Souplis M., Lemaitre A., Legallois D., Coulbault L., Simard C. et al. Argon exposure induces postconditioning in myocardial ischemia-reperfusion. J Cardiovasc Pharmacol Ther. 2017; 22 (6): 564–573. DOI: 10.1177/1074248417702891. PMID: 28381122.

16. Mayer B., Soppert J., Kraemer S., Schemmel S., Beckers C., Bleilevens C., Rossaint R. et al. Argon induces protective effects in cardiomyocytes during the second window of preconditioning. Int J Mol Sci. 2016; 17 (7): 1159. DOI: 10.3390/ijms17071159. PMID: 27447611.

17. Ulbrich F., Kaufmann K., Roesslein M., Wellner F., Auwärter V., Kempf J., Loop T. et al. Argon mediates anti-apoptotic signaling and neuroprotection via inhibition of toll-Like receptor 2 and 4. PLoS One. 2015; 10 (12): e0143887. DOI: 10.1371/journal.pone.0143887. PMID: 26624894.

18. Ulbrich F., Lerach T., Biermann J., Kaufmann K.B., Lagreze W.A., Buerkle H., Loop T. et al. Argon mediates protection by interleukin-8 suppression via a TLR2/TLR4/STAT3/NF-kB pathway in a model of apoptosis in neuroblastoma cells in vitro and following ischemia-reperfusion injury in rat retina in vivo. J Neurochem. 2016; 138 (6): 859–73. DOI: 10.1111/jnc.13662. PMID: 27167824

19. Spaggiari S., Kepp O., Rello-Varona S., Chaba K., Adjemian S., Pype J., Galluzzi L. et al. Antiapoptotic activity of argon and xenon. Cell Cycle. 2013; 12 (16): 2636–42. DOI: 10.4161/cc.25650. PMID: 23907115

20. Fahlenkamp A.V., Rossaint R., Coburn M. Neuroprotektion durch edelgase: neue entwicklungen und erkenntnisse. [Neuroprotection by noble gases: new developments and insights]. Anaesthesist. 2015; 64 (11): 855-858. (in German). DOI: 10.1007/s00101-015-0079-6. PMID: 26329914

21. Fahlenkamp A.V., Rossaint R., Haase H., Al Kassam H., Ryang Y.M., Beyer C., Coburn M. The noble gas argon modifies extracellular signal-regulated kinase 1/2 signaling in neurons and glial cells. Eur J Pharmacol. 2012; 674 (2-3): 104–111. DOI: 10.1016/j.ejphar.2011.10.045. PMID: 22094065.

22. Zhao H., Mitchell S., Ciechanowicz S., Savage S., Wang T., Ji X., Ma D. Argon protects against hypoxic-ischemic brain injury in neonatal rats through activation of nuclear factor (erythroid-derived 2)-like 2. Oncotarget. 2016; 7 (18): 25640–51. DOI: 10.18632/oncotarget.8241. PMID: 27016422

23. Zhao H., Mitchell S., Koumpa S., Cui Y.T., Lian Q., Hagberg H., Johnson M.R. et al. Heme oxygenase-1 mediates neuroprotection conferred by argon in combination with hypothermia in neonatal hypoxia-ischemia brain injury. Anesthesiology. 2016; 125 (1): 180–92. DOI: 10.1097/ALN.0000000000001128. PMID: 27065095.

24. Harris K., Armstrong S.P., Campos-Pires R., Kiru L., Franks N.P., Dickinson R. Neuroprotection against traumatic brain injury by xenon, but not argon, is mediated by inhibition at the N-methylD-aspartate receptor glycine site. Anesthesiology. 2013; 119 (5): 1137–48. DOI: 10.1097/ALN.0b013e3182a2a265. PMID: 23867231

25. David H.N., Haelewyn B., Risso J.-J., Abraini J.H. Modulation by the noble gas argon of the catalytic and thrombolytic efficiency of tissue plasminogen activator. Naunyn Schmiedebergs Arch Pharmacol 2013; 386 (1): 91-5. DOI: 10.1007/s00210-012-0809-0. PMID: 23142817

26. Höllig A., Weinandy A., Liu J., Clusmann H., Rossaint R., Coburn M. Beneficial properties of argon after experimental subarachnoid hemorrhage: early treatment reduces mortality and influences hippocampal protein expression. Crit Care Med. 2016; 44 (7): e520-9. DOI: 10.1097/CCM.0000000000001561. PMID: 26751611

27. Zhuang L., Yang T., Zhao H., Fidalgo A.R., Vizcaychipi M.P., Sanders R.D., Yu B. et al. The protective profile of argon, helium, and xenon in a model of neonatal asphyxia in rats. Crit Care Med. 2012; 40 (6): 1724–1730. DOI: 10.1097/CCM.0b013e3182452164. PMID: 22610177

28. Fahlenkamp A.V., Coburn M., de Prada A., Gereitzig N., Beyer C., Haase H., Rossaint R. et al. Expression analysis following argon treatment in an in vivo model of transient middle cerebral artery occlusion in rats. Med Gas Res. 2014; 4: 11. DOI: 10.1186/2045-9912-4-11. PMID: 25671080

29. Ulbrich F., Schallner N., Coburn M., Loop T., Lagrèze W.A., Biermann J., Goebel U. Argon inhalation attenuates retinal apoptosis after ischemia/reperfusion injury in a time- and dose-dependent manner in rats. PLoS One. 2014; 9 (12): e115984. DOI: 10.1371/journal.pone.0115984. PMID: 25535961

30. Ulbrich F., Kaufmann K.B., Coburn M., Lagrèze W.A., Roesslein M., Biermann J., Buerkle H. et al. Neuroprotective effects of argon are mediated via an ERK-1/2 dependent regulation of heme-oxygenase-1 in retinal ganglion cells. J Neurochem. 2015; 134 (4): 717–727. DOI: 10.1111/jnc.13115. Epub 2015. PMID: 25876941

31. Abraini J.H., Kriem B., Balon N., Rostain J.-C., Risso J.J. Gammaaminobutyric acid neuropharmacological investigations on narcosis produced by nitrogen, argon, or nitrous oxide. Anesth Analg. 2003; 96 (3): 746–749. DOI: 10.1213/01.ANE.0000050282.14291.38. PMID: 12598256 32. Faure A., Bruzzese L., Steinberg J.-G., Jammes Y., Torrents J., Berdah S.V., Garnier E. et al. Effectiveness of pure argon for renal transplant preservation in a preclinical pig model of heterotopic autotransplantation. J Transl Med. 2016; 14: 40. DOI: 10.1186/s12967-016-0795-y. PMID: 26847569

32. Liu J., Nolte K., Brook G., Liebenstund L., Weinandy A., Höllig A., Veldeman M. et al. Post-stroke treatment with argon attenuated brain injury, reduced brain inflammation and enhanced M2 microglia/macrophage polarization: a randomized controlled animal study. Crit Care. 2019; 23 (1): 198. DOI: 10.1186/s13054-019-2493-7. PMID: 31159847

33. De Roux Q., Lidouren F., Kudela A., Slassi L., Kohlhauer M., Boissady E., Chalopin M. et al. Argon attenuates multiorgan failure in relation with HMGB1 inhibition. Int J Mol Sci. 2021; 22 (6): 3257. DOI: 10.3390/ijms22063257. PMID: 33806919

34. Qi H., Soto-Gonzalez L., Krychtiuk K.A., Ruhittel S., Kaun C., Speidl W.S., Kiss A. et al. Pretreatment with argon protects human cardiac myocyte-like progenitor cells from oxygen glucose deprivation-induced cell death by activation of AKT and differential regulation of mapkinases. Shock. 2018; 49 (5): 556–563. DOI: 10.1097/SHK.0000000000000998. PMID: 29658909

35. Grüßer L., Blaumeiser-Debarry R., Krings M., Kremer B., Höllig A., Rossaint R., Coburn M. Argon attenuates the emergence of secondary injury after traumatic brain injury within a 2-hour incubation period compared to desflurane: an in vitro study. Med Gas Res. 2017; 7 (2): 93–100. DOI: 10.4103/2045-9912.208512. PMID: 28744361

36. Creed J., Cantillana-Riquelme V., Yan B.H., Ma S., Chu D., Wang H., Turner D.A. et al. Argon inhalation for 24 h after closed-head injury does not improve recovery, neuroinflammation, or neurologic outcome in mice. Neurocrit Care. 2021; 34 (3): 833–843. DOI: 10.1007/s12028-020-01104-0. PMID: 32959200

37. David H.N., Dhilly M., Degoulet M., Poisnel G., Meckler C., Vallée N., Blatteau J.É. et al. Argon blocks the expression of locomotor sensitization to amphetamine through antagonism at the vesicular monoamine transporter-2 and mu-opioid receptor in the nucleus accumbens. Transl Psychiatry. 2015; 5 (7): e594. DOI: 10.1038/tp.2015.27. PMID: 26151922

38. Zhuang L., Yang T., Zhao H., Fidalgo A.R., Vizcaychipi M.P., Sanders R.D., Yu B. et al. The protective profile of argon, helium, and xenon in a model of neonatal asphyxia in rats. Crit Care Med. 2012; 40 (6): 1724–1730. DOI: 10.1097/CCM.0b013e3182452164. PMID: 22610177

39. Koziakova M., Harris K., Edge C.J., Franks N.P., White I.L., Dickinson R. Noble gas neuroprotection: xenon and argon protect against hypoxic-ischaemic injury in rat hippocampus in vitro via distinct mechanisms. Br J Anaesth. 2019; 123 (5): 601–609. DOI: 10.1016/j.bja.2019.07.010. PMID: 31470983

40. Shakova F.M.; Kirova Y.I.; Silachev D.N.; Romanova G.A.; Morozov S.G. Protective effects of PGC-1α activators on ischemic stroke in a rat model of photochemically induced thrombosis. Brain Sci. 2021; 11 (3): 325. DOI: 10.3390/brainsci11030325. PMID: 33806692

41. De Ryck M., Van Reempts J., Borgers M., Wauquier A., Janssen P.A. Photochemical stroke model: flunarizine prevents sensorimotor deficits after neocortical infarcts in rats. Stroke. 1989; 20 (10): 1383–1390. DOI: 10.1161/01.str.20.10.1383. PMID: 2799870

42. Jolkkonen J., Puurunen K., Rantakömi S., Härkönen A., Haapalinna A., Sivenius J. Behavioral effects of the alpha (2)-adrenoceptor an tagonist, atipamezole, after focal cerebral ischemia in rats. Eur J Pharmacol. 2000; 400 (2–3): 211–219. DOI: 10.1016/s0014-2999(00)00409-x. PMID: 10988336

43. Silachev D.N., Uchevatkin A.A., Pirogov Yu.A., Zorov D.B., Isaev N.K. Comparative evaluation of two methods for studies of experimental focal ischemia: magnetic resonance tomography and triphenyltetrazoleum detection of brain injuries. Bull Exp Biol Med. 2009; 147 (2): 269–272. DOI: 10.1007/s10517-009-0489-z. PMID: 19513437

44. Isaev N.K., Novikova S.V., Stelmashook E.V., Barskov I.V., Silachev D.N., Khaspekov L.G., Skulachev V.P. et al. Mitochondria-targeted plastoquinone antioxidant SkQR1 decreases trauma-induced neurological deficit in rat. Biochemistry (Mosc). 2012; 77 (9): 996–999. DOI: 10.1134/S0006297912090052. PMID: 23157258

45. Golubev A.M. Models of ischemic stroke (Review). General Reanimatology/Obshchaya Reanimatologya. 2020; 16 (1): 59–72. (in Russ.). DOI: 10.15360/1813-9779-2020-1-59-72

46. Ma S., Chu D., Li L., Creed J.A., Ryang Y.-M., Sheng H., Yang W. et al. Argon inhalation for 24 hours after onset of permanent focal cerebral ischemia in rats provides neuroprotection and improves neurologic outcome. Crit Care Med. 2019; 47 (8): e693–e699. DOI: 10.1097/CCM.0000000000003809. PMID: 31094741

47. Zhang L., Chopp M., Zhang Y., Xiong Y., Li C., Sadry N., Rhaleb I. et al. Diabetes mellitus impairs cognitive function in middle-aged rats and neurological recovery in middle-aged rats after stroke. Stroke. 2016; 47 (8): 2112–2118. DOI: 10.1161/STROKEAHA.115.012578. PMID: 27387991

48. Shin S.S., Hwang M., Diaz-Arrastia R., Kilbaugh T.J. Inhalational gases for neuroprotection in traumatic brain injury. J Neurotrauma. 2021; 38 (19): 2634–2651. DOI: 10.1089/neu.2021.0053. PMID: 33940933

49. Zarzhetsky Yu.V., Borisov K.Yu., Grebenchikov O.A., Shaibakova V.L., Levikov D.I., Likhvantsev V.V. Effect of sevoflurane on functional recovery in animals sustaining systemic circulatory arrest. General Reanimatology/ Obshchaya Reanimatologya. 2012; 8 (2): 15. (In Russ.). DOI: 10.15360/1813-9779-2012-2-15

50. Grebenshchikov O.A., Avrushchenko M.Sh., Borisov K.Yu., Ilyin Yu.V., Likhvantsev V.V. Neuroprotective effects of sevoflurane on the model of total ischemia-reperfusion. Clinical Pathophysiology/ Klinicheskaya Patofysiologiya. 2014; 2; 57–65. (in Russ.). eLIBRARY ID: 26292775

51. Likhvantsev V.V., Landoni G., Levikov D.I., Grebenchikov O.A., Skripkin Y.V., Cherpakov R. A. Sevoflurane versus total intravenous anesthesia for isolated coronary artery bypass surgery with cardiopulmonary bypass: a randomized trial. J Cardiothorac Vasc Anesth. 2016; 30 (5): 1221–1227. DOI: 10.1053/j.jvca.2016.02.030. PMID: 27431595

52. Silachev D.N., Usatikova E.A., Pevzner I.B., Zorova L.D., Babenko V.A., Gulyaev M.V., Pirogov Y.A. et al. Effect of anesthetics on efficiency of remote ischemic preconditioning. Biochemistry (Mosc). 2017; 82 (9): 1006–1016. DOI: 10.1134/S0006297917090036. PMID: 28988529.

53. Boeva E.A., Grebenchikov O.A. Organoprotective Properties of Argon (Review). General Reanimatology/Obshchaya Reanimatologya. 2022; 18 (5): 44–59. (in Russ.). DOI: 10.15360/1813-9779-2022-5-44-59.

54. David H.N., Haelewyn B., Degoulet M., Colomb D.G. Jr, Risso J.J., Abraini J.H. Ex vivo and in vivo neuroprotection induced by argon when given after an excitotoxic or ischemic insult. PLoS One. 2012; 7 (2): e30934. DOI: 10.1371/journal.pone.0030934. PMID: 22383981


Review

For citations:


Boeva E.A., Silachev D.N., Yakupova E.I., Milovanova M.A., Varnakova L.A., Kalabushev S.N., Denisov S.O., Antonova V.V., Ryzhkov I.A., Lapin K.N., Grebenchikova A.A. Experimental Study of Neuroprotective Properties of Inhaled Argon-Oxygen Mixture in a Photoinduced Ischemic Stroke Model. General Reanimatology. 2023;19(3):46-53. https://doi.org/10.15360/1813-9779-2023-3-46-53

Views: 896


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)