Preview

General Reanimatology

Advanced search

Photochemicallly Induced Thrombosis as a Model of Ischemic Stroke

https://doi.org/10.15360/1813-9779-2023-3-54-65

Abstract

Better understanding of ischemic brain injury mechanisms is important for the development and improvement of diagnostic and therapeutic modalities for management of ischemic stroke. As experimental studies are on demand, there’s a need for relevant models of focal brain lesions. Photochemically induced thrombosis remains one of the most popular models of ischemic stroke.
The purpose of the review is to consider the pathogenesis and applicational relevance of the photochemical thrombosis in ischemic stroke modeling.
Material and methods. The information was searched using PubMed and Google Scholar databases and keywords «photothrombotic stroke» without language restrictions. 74 papers out of more than 600 sources were found the most relevant for the purpose of this review and selected for the analysis. Of these, more than 50% have been published in the last five years. The criterion for excluding a source was an inconsistency with the objectives of the review and low information content.
Results. We outlined a variety of features in modeling photothrombotic stroke, analyzed the advantages and disadvantages of the model, presented data on current method’s modifications, as well as approaches to evaluation of brain lesions in ischemic stroke induced by photothrombosis, and summarized information about the mechanisms of brain damage induced in this model.
Conclusion. Several advantages of the photothrombotic stroke model, such as low invasiveness, high reproducibility, inherent control of brain infarction volume and low mortality, determine its active use in experimental studies of ischemic stroke. Pathological processes in the brain modeled by photochemical thrombosis are similar to the processes occurring in acute ischemic cerebral circulation events. Therefore, this model provides insights into cellular and molecular mechanisms of ischemic brain damage, and can be used for developing novel therapeutic approaches for management of ischemic stroke.

About the Authors

I. V. Ostrova
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

 Irina V. Ostrova 

 25 Petrovka Str., Bldg. 2, 107031 Moscow, Russia 



A. S. Babkina
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

 Anastasia S. Babkina 

 25 Petrovka Str., Bldg. 2, 107031 Moscow, Russia 



M. A. Lyubomudrov
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

 Maxim A. Lyubomudrov 

 25 Petrovka Str., Bldg. 2, 107031 Moscow, Russia 



A. V. Grechko
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

 Andrey V. Grechko 

 25 Petrovka Str., Bldg. 2, 107031 Moscow, Russia 



A. M. Golubev
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

 Arkady M. Golubev 

 25 Petrovka Str., Bldg. 2, 107031 Moscow, Russia 



References

1. Paul S., Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: an overview of clinical and preclinical studies. Exp Neurol. 2021; 335: 113518. DOI: 10.1016/j.expneurol.2020.113518. PMID: 33144066

2. Golubev A.M. Models of ischemic stroke (Review). General Reanimatology. 2020; 16 (1): 59–72. DOI: 10.15360/1813-9779-2020-1-59-72

3. Tyurenkov I.N., Kurkin D.V., Litvinov A.A., Logvinova E.A., Morkovin E.I., Bakulin D.A., Volotova E.V. Acute stroke models used in preclinical reserch. Drug Development & Registration//Razrabotka i Registraciya Lekarstvennykh Sredstv. 2018; (1): 186–197. (In Russ.)

4. Weber R.Z., Grönnert L., Mulders G., Maurer M.A., Tackenberg C., Schwab M.E., Rust R. Characterization of the blood brain barrier disruption in the photothrombotic stroke model. Front Physiol. 2020; 11: 586226. DOI: 10.3389/fphys.2020.586226. PMID: 33262704.

5. Carmichael S.T. Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx. 2005; 2 (3): 396–409. DOI: 10. 1602/neurorx.2.3.396.

6. Llovera G., Pinkham K., Liesz A. Modeling stroke in mice: focal cortical lesions by photothrombosis. J Vis Exp. 2021; (171). DOI: 10.3791/ 62536. PMID: 34028443

7. Eid M., Dzreyan V., Demyanenko S. Sirtuins 1 and 2 in the acute period after photothrombotic stroke: expression, localization and involvement in apoptosis. Front. Physiol. 2022; 13: 782684. DOI: 10.3389/fphys.2022.782684. PMID: 35574497

8. Nucci M.P., Oliveira F.A., Ferreira J.M., Pinto Y.O., Alves A.H., Mamani J.B., Nucci L.P. et al. Effect of cell therapy and exercise training in a stroke model, considering the cell track by molecular image and behavioral analysis. Cells. 2022; 11 (3): 485. DOI: 10.3390/cells11030485. PMID: 35159294

9. Qian C., Li P.C., Jiao Y., Yao H.H., Chen Y.C., Yang J., Ding J. et al. Precise characterization of the penumbra revealed by MRI: a modified photothrombotic stroke model study. PLoS One. 2016; 11 (4): e0153756. DOI: 10.1371/journal.pone.0153756. PMID: 27093556

10. Macrae I.M. Preclinical stroke research--advantages and disadvantages of the most common rodent models of focal ischemia. Br J Pharmacol. 2011; 164 (4): 1062–1078. DOI: 10.1111/j.1476-5381.2011.01398.x. PMID: 21457227

11. Uzdensky A. B., Demyanenko S. V. Photothrombotic stroke. Biochemistry of penumbra. 2016. Publisher: Southern Federal University. eLibrary: 29456163; EDN: YUPIBL

12. Hu Sh., Wu G., Wu B., Du Zh., Zhang Yi. Rehabilitative training paired with peripheral stimulation promotes motor recovery after ischemic cerebral stroke. Exp Neurol. 2021; 349: 113960. DOI: 10.1016/j.expneurol.2021.113960. PMID: 34953896

13. Barskov I.V., Taktarov V.G., Ivanova M.V., Sergeev V.A., Pavlova E. A. Morphological studies of focus of focal cerebral cortex ischemic injury of rats on the laser photoinduced thrombosis model. Bulletin of the Medical Institute «Reaviz»: Rehabilitation, Doctor and Health/Vestnik Meditsinskogo Instituta «Reaviz»: Reabilitatsiya, Vrach i Zdorovie. 2016. 3 (23): 39–43. (in Russ.). eLIBRARY ID: 27631994. EDN: XGRLHZ

14. Yao Z., Yazdan-Shahmorad A.A. Quantitative model for estimating the scale of photochemically induced ischemic stroke. Annu Int Conf IEEE Eng Med Biol Soc. 2018; 2018: 2744–2747. DOI: 10.1109/EMBC.2018.8512880. PMID: 30440969

15. Ota Y., Kubota Y., Hotta Y., Matsumoto M., Matsuyama N., Kato T., Hamakawa T. et al. Change in the central control of the bladder function of rats with focal cerebral infarction induced by photochemically-induced thrombosis. PLoS One. 2021; 16 (11): e0255200. DOI: 10.1371/journal.pone.0255200. PMID: 34752461

16. Yoo H.J., Ham J., Duc N.T., Lee B. Quantification of stroke lesion volume using epidural EEG in a cerebral ischeamic rat model. Sci Rep. 2021; 11 (1): 2308. DOI: 10.1038/s41598-021-81912-2. PMID: 33504903

17. Knezic A., Broughton B.R.S., Widdop R.E., McCarthy C.A. Optimising the photothrombotic model of stroke in the C57BI/6 and FVB/N strains of mouse. Sci Rep. 2022; 12 (1): 7598. DOI: 10.1038/s41598-022-11793-6. PMID: 35534531.

18. Aswendt M., Pallast N., Wieters F., Baues M., Hoehn M., Fink G.R. Lesion size- and location-dependent recruitment of contralesional thalamus and motor cortex facilitates recovery after stroke in mice. Transl Stroke Res. 2021; 12 (1): 87–97. DOI: 10.1007/s129. PMID: 32166716

19. Sommer C.J. Ischemic stroke: experimental models and reality. Acta Neuropathol. 2017; 133 (2): 245–261. DOI: 10.1007/s00401-017-1667-0. 2017. PMID: 28064357.

20. Clark T.A., Sullender C., Kazmi S.M., Speetles B.L., Williamson M.R., Palmberg D.M., Dunn A.K. et al. Artery targeted photothrombosis widens the vascular penumbra, instigates peri-infarct neovascularization and models forelimb impairments. Sci Rep. 2019; 9 (1): 2323. DOI: 10.1038/s41598-019-39092-7.PMID: 30787398.

21. Barthels D., Das H. Current advances in ischemic stroke research and therapies. Biochim Biophys Acta Mol Basis Dis. 2020; 1866 (4): 165260. DOI: 10.1016/j.bbadis.2018.09.012. PMID: 31699365.

22. Uzdensky A.B. Photothrombotic stroke as a model of ischemic stroke. Transl Stroke Res. 2018; 9 (5): 437–451. DOI: 10.1007/s12975-017-0593-8. 2017. PMID: 29188434.

23. Astrup J., Siesjö B.K., Symon L. Thresholds in cerebral ischemia — the ischemic penumbra. Stroke. 1981; 12 (6): 723–725. DOI: 10.1161/01.str.12.6.723. PMID: 6272455

24. Back T. Pathophysiology of the ischemic penumbra--revision of a concept. Cell Mol Neurobiol. 1998; 18 (6): 621–638. DOI: 10.1023/a:1020629818207. PMID: 9876870

25. Tuor U.I., Deng Q., Rushforth D., Foniok T., Qiao M. Model of minor stroke with mild peri-infarct ischemic injury. J. Neurosci Methods. 2016; 268: 56–65. DOI: 10.1016/j.jneumeth.2016.04.025. PMID: 27139736

26. Kuo Y.M., Sun Y.Y., Kuan C.Y. A Fibrin-enriched and tPA-sensitive photothrombotic stroke model. J Vis Exp. 2021; (172). DOI: 10.3791/61740. PMID: 34152310.

27. Kim Y., Lee Y.B., Bae S.K., Oh S.S., Choi J.R. Development of a photochemical thrombosis investigation system to obtain a rabbit ischemic stroke model. Sci Rep. 2021; 11 (1): 5787. DOI: 10.1038/s41598-021-85348-6. PMID: 33707580.

28. Kuroiwa T., Xi G., Hua Y., Nagaraja T.N., Fenstermacher J.D., Keep R.F. Development of a rat model of photothrombotic ischemia and infarction within the caudoputamen. Stroke. 2009; 40 (1): 248–253. DOI: 10.1161/STROKEAHA.108.527853. PMID: 19038913.

29. Hosseini S.M., Pourbadie H.G., Naderi N., Sayyah M., Zibaii M.I. Photothrombotically induced unilateral selective hippocampal ischemia in rat. J Pharmacol Toxicol Methods. 2018; 94 (Pt 1): 77–86. DOI: 10.1016/j.vascn.2018.06.003. 2018 PM. PMID: 29906509

30. Genina E.A., Bashkatov A.N., Semyachkina-Glushkovskaya O.V., Tuchin V.V. Optical illumination of the cranial bone with multicomponent immersion solutions and visualization of cerebral venous blood flow. News of Saratov University. A New Series. Physics Series//Izvestiya Saratovskogo Universiteta. Novaya Seriya. Seriya Fizika. 2017; 17 (2): 98–110. (in Russ.). DOI: 10.18500/1817-3020-2017-17-2-98-110

31. Zhang C., Feng W., Zhao Y., Yu T., Li P., Xu T., Luo Q. et al. A large, switchable optical clearing skull window for cerebrovascular imaging. Theranostics. 2018; 8 (10): 2696–2708. DOI: 10.7150/thno. 23686. PMID: 29774069.

32. Li Z., Gao H., Zeng P., Jia Y., Kong X., Xu K., Bai R. Secondary degeneration of white matter after focal sensorimotor cortical ischemic stroke in rats. Front Neurosci. 2021; 14: 611696. DOI: 10.3389/fnins.2020.611696. PMID: 33536869

33. Wahl A.S., Correa D., Imobersteg S., Maurer M.A., Kaiser J., Augath M.A., Schwab M.E. Targeting therapeutic antibodies to the CNS: a comparative study of intrathecal, intravenous, and subcutaneous anti-Nogo A antibody treatment after stroke in rats. Neurotherapeutics. 2020; 17 (3): 1153–1159. DOI: 10.1007/s13311-020-00864-z. PMID: 32378027.

34. Poinsatte K., Betz D., Torres V.O., Ajay A.D., Mirza S., Selvaraj U.M., Plautz E.J. et al. Visualization and quantification of post-stroke neural connectivity and neuroinflammation using serial twophoton tomography in the whole mouse brain. Front Neurosci. 2019; 13: 1055. DOI: 10.3389/fnins.2019.01055. PMID: 31636534.

35. Pallast N., Diedenhofen M., Blaschke S., Wieters F., Wiedermann D., Hoehn M., Fink R.G. et al. Processing pipeline for atlas-based imaging data analysis of structural and functional mouse brain MRI (AIDAmri). Front Neuroinform. 2019; 13: 42. DOI: 10.3389/fninf.PMID: 31231202

36. Pallast N., Wieters F., Fink G.R., Aswendt M. Atlas-based imaging data analysis tool for quantitative mouse brain histology (AIDAhisto). J Neurosci Methods. 2019; 326: 108394. DOI: 10.1016/j.jneumeth.2019.108394. PMID: 31415844

37. Li H., Zhang N., Lin H.Y., Yu Y., Cai Q.Y., Ma L., Ding S. Histological, cellular and behavioral assessments of stroke outcomes after photothrombosis-induced ischemia in adult mice. BMC Neurosci. 2014; 15: 58. DOI: 10.1186/1471-2202-15-58. PMID: 24886391

38. Williamson M.R., Franzen R.L., Fuertes C.J.A., Dunn A.K., Drew M.R., Jones T.A. A window of vascular plasticity coupled to behavioral recovery after stroke. J Neurosci. 2020; 40 (40): 7651–7667. DOI: 10.1523/JNEUROSCI.1464-20.2020. PMID: 32873722

39. Aamir R., Fyffe C., Korin N., Lawrence D.A., Su E.J., Kanapathipillai M. Heparin and arginine based plasmin nanoformulation for ischemic stroke therapy. International Journal of Molecular Sciences. 2021; 22 (21): 11477. DOI: 10.3390/ijms222111477.

40. Zhou M.Y., Zhang Y.J., Ding H.M., Wu W.F., Cai W.W., Wang Y.Q., Geng D.Q. Diprotin A TFA exerts neurovascular protection in ischemic cerebral stroke. Front Neurosci. 2022; 16: 861059. DOI: 10.3389/fnins.2022.861059. PMID: 35615279.

41. Sanchez-Bezanilla S., Hood R.J., Collins-Praino L.E., Turner R.J., Walker F.R., Nilsson M., Ong L.K. More than motor impairment: a spatiotemporal analysis of cognitive impairment and associated neuropathological changes following cortical photothrombotic stroke. J Cereb Blood Flow Metab. 2021; 41 (9): 2439–2455. DOI: 10.1177/0271678X211005877 2021. PMID: 33779358.

42. Yew W.P., Djukic N.D., Jayaseelan J.S.P., Woodman R.J., Muyderman H., Sims N.R. Differential effects of the cell cycle inhibitor, olomoucine, on functional recovery and on responses of peri-infarct microglia and astrocytes following photothrombotic stroke in rats. J Neuroinflammation. 2021; 18 (1): 168. DOI: 10.1186/s12974-021-02208-w. PMID: 34332596.

43. Lee S., Lim W., Ryu HW., Jo D., Min JJ., Kim HS., Hyun H. ZW800-1 for assessment of blood-brain barrier disruption in a photothrombotic stroke model. Int J Med Sci. 2017; 14 (13): 1430–1435. DOI: 10.7150/ijms.22294. PMID: 29200957

44. Noll J.M., Augello C.J., Kürüm E., Pan L., Pavenko A., Nam A., Ford B.D. Spatial analysis of neural cell proteomic profiles following ischemic stroke in mice using high-plex digital spatial profiling. Mol Neurobiol. 2022; 59 (12): 7236–7252. DOI: 10.1007/s12035-022-03031-x. PMID: 36151369

45. Frase S., Löffler F., Hosp J.A. Enhancing post-stroke rehabilitation and preventing exo-focal dopaminergic degeneration in rats-a role for substance P. Int J Mol Sci. 2022; 23 (7): 3848. DOI: 10.3390/ijms23073848. PMID: 35409207.

46. Uzdensky A., Demyanenko S., Fedorenko G., Lapteva T., Fedorenko A. Protein profile and morphological alterations in penumbra after focal photothrombotic infarction in the rat cerebral cortex. Mol Neurobiol. 2017; 54 (6): 4172–4188. DOI: 10.1007/s12035-016-9964-5. PMID: 27324898.

47. Choi I.A., Yun J.H., Kim J.H., Kim H.Y., Choi D.H., Lee J. Sequential transcriptome changes in the penumbra after ischemic stroke. Int J Mol Sci. 2019; 20 (24): 6349. DOI: 10.3390/ijms20246349. PMID: 31888302

48. Pushie M.J., Sylvain N.J., Hou H., Caine S., Hackett M.J., Kelly M.E. Tracking elemental changes in an ischemic stroke model with Xray fluorescence imaging. Sci Rep. 2020; 10 (1): 17868. DOI: 10.1038/s41598-020-74698-2. PMID: 33082455

49. Gu W.G., Brännström T., Jiang W., Wester P. A photothrombotic ring stroke model in rats with remarkable morphological tissue recovery in the region at risk. Exp Brain Res. 1999; 125 (2): 171–183. DOI: 10.1007/s002210050672. PMID: 10204770.

50. Hu X., Johansson I.M., Brännström T., Olsson T., Wester P. Longlasting neuronal apoptotic cell death in regions with severe ischemia after photothrombotic ring stroke in rats. Acta Neuropathol. 2002; 104 (5): 462–470. DOI: 10.1007/s00401-002-0579-8. PMID: 12410394

51. Gu W., Brännström T., Wester P. Cortical neurogenesis in adult rats after reversible photothrombotic stroke. J Cereb Blood Flow Metab. 2000; 20 (8): 1166–1173. DOI: 10.1097/00004647-200008000-00002. PMID: 10950377.

52. Zhang J., Zhang Y., Xing S., Liang Z., Zeng J. Secondary neurodegeneration in remote regions after focal cerebral infarction: a new target for stroke management? Stroke. 2012; 43 (6): 1700–1705. DOI: 10.1161/STROKEAHA.111.632448. PMID: 22492515

53. Pietrogrande G., Zalewska K., Zhao Z., Abdolhoseini M., Chow W.Z., Sanchez-Bezanilla S., Ong L.K. et al. Low oxygen post conditioning prevents thalamic secondary neuronal loss caused by excitotoxicity after cortical stroke. Sci Rep. 2019; 9 (1): 4841. DOI: 10.1038/s41598-019-39493-8. PMID: 30890719.

54. Necula D., Cho F.S., He A., Paz J.T. Secondary thalamic neuroinflammation after focal cortical stroke and traumatic injury mirrors corticothalamic functional connectivity. J Comp Neurol. 2022; 530 (7): 998–1019. DOI: 10.1002/cne.25259. PMID: 34633669.

55. Hosp J.A., Greiner K.L., Arellano L.M., Roth F., Löfflfler F., Reis J., Fritsch B. Progressive secondary exo-focal dopaminergic neurodegeneration occurs in not directly connected midbrain nuclei after pure motor-cortical stroke. Exp. Neurol. 2020; 327: 113211. DOI: 10.1016/j.expneurol.2020.113211. PMID: 31987834

56. Hertz L. Bioenergetics of cerebral ischemia: a cellular perspective. Neuropharmacology. 2008; 55 (3): 289–309. DOI: 10.1016/j.neuropharm.2008.05.023. PMID: 18639906

57. Leichsenring A., Riedel T., Qin Y., Rubini P., Illes P. Anoxic depolarization of hippocampal astrocytes: possible modulation of P2X7 receptors. Neurochem Int. 2013; 62 (1): 15–22. DOI: 10.1016/j.neuint.2012.11.002. PMID: 23147683

58. Abdullahi W., Tripathi D., Ronaldson P.T. Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. Am J Physiol Cell Physiol. 2018; 315 (3): C343–C356. DOI: 10.1152/ajpcell.00095.2018. PMID: 29949404

59. Hoff E.I., oude Egbrink M.G., Heijnen V.V., Steinbusch H.W., van Oostenbrugge R.J. In vivo visualization of vascular leakage in photochemically induced cortical infarction. J Neurosci Methods. 2005; 141 (1): 135–141. DOI: 10.1016/j.jneumeth.2004.06.004. PMID: 15585297.

60. Hirschberg H., Uzal F.A., Chighvinadze D., Zhang M. J., Peng Q., Madsen S. J. Disruption of the blood-brain barrier following ALAmediated photodynamic therapy. Lasers Surg Med. 2008; 40 (8): 535–542. DOI: 10.1002/lsm.20670. PMID: 18798293

61. Sun L., Strelow H., Mies G., Veltkamp R. Oxygen therapy improves energy metabolism in focal cerebral ischemia. Brain Res. 2011; 1415: 103–108. DOI: 10.1016/j.brainres.2011.07.064. PMID: 21872850

62. Qin C., Yang S., Chu Y.H., Zhang H., Pang X.W., Chen L., Zhou L.Q. et al. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2022; 7 (1): 215. DOI: 10.1038/s41392-022-01064-1. PMID: 35794095.

63. Chen H., Yoshioka H., Kim G.S., Jung J.E., Okami N., Sakata H., Maier C.M. et al. Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal. 2011; 14 (8): 1505–1517. DOI: 10.1089/ars.2010.3576. PMID: 20812869

64. Banjara M., Ghosh C. Sterile neuroinflammation and strategies for therapeutic intervention. Int J Inflam. 2017; 2017: 8385961. DOI: 10.1155/2017/8385961. PMID: 28127491.

65. Gülke E., Gelderblom M., Magnus T. Danger signals in stroke and their role on microglia activation after ischemia. Ther Adv Neurol Disord. 2018; 11: 1756286418774254. DOI: 10.1177/1756286418774254. PMID: 29854002.

66. Jayaraj R.L., Azimullah S., Beiram R., Jalal F.Y., Rosenberg G.A. Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation. 2019; 16 (1): 142. DOI: 10.1186/s12974-019-1516-2. PMID: 31291966

67. Gorlamandala N., Parmar J., Craig A.J., Power J.M., Moorhouse A.J., Krishnan A.V., Housley G.D. Focal ischaemic infarcts expand faster in cerebellar cortex than cerebral cortex in a mouse photothrombotic stroke model. Transl Stroke Res. 2018; 9 (6): 643–653. DOI: 10.1007/s12975-018-0615-1. PMID: 29455391

68. Nowicka D., Rogozinska K., Aleksy M., Witte O.W., Skangiel-Kramska J. Spatiotemporal dynamics of astroglial and microglial responses after photothrombotic stroke in the rat brain. Acta Neurobiol Exp (Wars). 2008; 68 (2): 155–168. PMID: 18511952.

69. Hennessy E., Griffin É.W., Cunningham C. Astrocytes are primed by chronic neurodegeneration to produce exaggerated chemokine and cell infiltration responses to acute stimulation with the cytokines IL-1β and TNF-α. J Neurosci. 2015; 35 (22): 8411–8422. DOI: 10.1523/JNEUROSCI.2745-14.2015. PMID: 26041910

70. Wang H., Song G., Chuang H., Chiu C., Abdelmaksoud A., Ye Y., Zhao L. Portrait of glial scar in neurological diseases. Int J Immunopathol Pharmacol. 2018; 31: 2058738418801406. DOI: 10.1177/2058738418801406. PMID: 30309271

71. Clausen B.H., Lambertsen K.L., Babcock A.A., Holm T.H., DagnaesHansen F., Finsen B. Interleukin-1beta and tumor necrosis factoralpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J Neuroinflammation. 2008; 5: 46. DOI: 10.1186/1742-2094-5-46. PMID: 18947400

72. Jin R., Liu L., Zhang S., Nanda A., Li G. Role of inflammation and its mediators in acute ischemic stroke. J Cardiovasc Transl Res. 2013; 6 (5): 834–851. DOI: 10.1007/s12265-013-9508-6. PMID: 24006091

73. Xie L., Yang S.H. Interaction of astrocytes and T cells in physiological and pathological conditions. Brain Res. 2015; 1623: 63–73. DOI: 10.1016/j.brainres.2015.03.026. PMID: 25813828

74. Qiu Y.M., Zhang C.L., Chen A.Q., Wang H.L., Zhou Y.F., Li Y.N., Hu B. Immune cells in the BBB disruption after acute ischemic stroke: targets for immune therapy? Front Immunol. 2021; 12: 678744. DOI: 10.3389/fimmu.2021.678744. PMID: 34248961

75. Chamorro Á., Meisel A., Planas A.M., Urra X., van de Beek D., Veltkamp R. The immunology of acute stroke. Nat Rev Neurol. 2012; 8 (7): 401–410. DOI: 10.1038/nrneurol.2012.98. PMID: 22664787.

76. Veltkamp R., Gill D. Clinical trials of immunomodulation in ischemic stroke. Neurotherapeutics. 2016; 13 (4): 791–800. DOI: 10.1007/s13311-016-0458-y. PMID: 27412685


Review

For citations:


Ostrova I.V., Babkina A.S., Lyubomudrov M.A., Grechko A.V., Golubev A.M. Photochemicallly Induced Thrombosis as a Model of Ischemic Stroke. General Reanimatology. 2023;19(3):54-65. https://doi.org/10.15360/1813-9779-2023-3-54-65

Views: 429


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)