Preview

General Reanimatology

Advanced search

The Effect of High Nitric Oxide Concentrations on Oxygenators in Cardiopulmonary Bypass Machines (Experimental Study)

https://doi.org/10.15360/1813-9779-2024-1-2351

Abstract

The aim of the study. To study the effect of high nitric oxide concentrations on hollow polypropylene fibers of oxygenators.

Materials and methods. The study was conducted in two stages. At the first stage, we evaluated the stability of oxygenator membrane made of hollow polypropylene fibers after six hours of exposure to air-oxygen mixture containing NO at 500 parts per million, or 500 pro pro mille (ppm) concentration, using mass spectrometry and infrared spectroscopy. At the second stage, an experiment with cardiopulmonary bypass (CPB) was conducted on 10 pigs. In the study group (n=5) animals sweep gas was supplied to the oxygenator as an air-oxygen mixture with NO at 100 ppm. In the control group animals (n=5) an air-oxygen mixture was used without NO. The CPB lasted for 4 hours, followed by observation for 12 hours. NO, NO2 (at the inlet and outlet of the oxygenator), and the dynamics of methemoglobin were evaluated. After weaning of animals from CPB, the oxygenators were tested for leakproofness, and scanning electron microscopy (SEM) was performed.

Results. The oxygenator made of polypropylene hollow fibers retained its gas transfer parameters after six hours of exposure to air-oxygen mixture containing NO at 500 ppm. Based on IR-Fourier spectroscopy findings, NO did not affect structural integrity of polypropylene membranes. NO added to gas mixture at 100 ppm did not increase NO2 to toxic level of 2 ppm in 91% of control tests during 4 hours CPB in pigs; mean value was 1.58 ± 0.28 ppm. Methemoglobin concentration did not exceed the upper limit of permissible level (3%), and there were no statistically significant differences with the control group. All tested oxygenators have passed the leakproofness test. According to SEM findings, larger amounts of fibrin deposits were found in the control group oxygenators vs study group.

Conclusion. There were no negative effects of NO at 500 ppm concentration on the oxygenator membrane made of hollow polypropylene fibers. NO at 100 ppm in a gas-mixture supplied to oxygenators did not lead to an exceedance of safe NO2 and methemoglobin concentrations in an animal model. Reduced fibrin deposits on hollow fibers of polypropylene oxygenator membranes were observed when with NO at a level of 100 ppm was added to a gas mixture.  

About the Authors

A. M. Radovskiy
Almazov National Medical Research Center
Russian Federation

Alexey M. Radovskiy

2 Akkuratova str., Saint-Petersburg 197341



I. V. Vorotyntsev
Mendeleev University of Chemical Technology of Russia
Russian Federation

Ilya V. Vorotyntsev

9 Miusskaya sq., Moscow 125047



A. A. Atlaskin
Mendeleev University of Chemical Technology of Russia
Russian Federation

Artem A. Atlaskin

9 Miusskaya sq., Moscow 125047



A. N. Petukhov
Mendeleev University of Chemical Technology of Russia
Russian Federation

Anton N. Petukhov

9 Miusskaya sq., Moscow 125047



S. S. Kryuchkov
Mendeleev University of Chemical Technology of Russia
Russian Federation

Sergey S. Kryuchkov

9 Miusskaya sq., Moscow 125047



M. E. Atlaskina
Mendeleev University of Chemical Technology of Russia
Russian Federation

Maria E. Atlaskina

9 Miusskaya sq., Moscow 125047



A. N. Stepakova
Mendeleev University of Chemical Technology of Russia
Russian Federation

Anna N. Stepakova

9 Miusskaya sq., Moscow 125047



A. O. Marichev
Almazov National Medical Research Center
Russian Federation

Alexander O. Marichev

2 Akkuratova str., Saint-Petersburg 197341



E. K. Barygin
Almazov National Medical Research Center
Russian Federation

Egor K. Barygin

2 Akkuratova str., Saint-Petersburg 197341



V. V. Osovskikh
Almazov National Medical Research Center
Russian Federation

Victor V. Osovskikh

2 Akkuratova str., Saint-Petersburg 197341



V. D. Selemir
Russian Federal Nuclear Center, All-Russian Scientific Research Institute of Experimental Physics
Russian Federation

Victor D. Selemir

37 Mira av., Sarov 607188



S. N. Buranov
Russian Federal Nuclear Center, All-Russian Scientific Research Institute of Experimental Physics
Russian Federation

Sergey N. Buranov

37 Mira av., Sarov 607188



V. V. Golovanov
Russian Federal Nuclear Center, All-Russian Scientific Research Institute of Experimental Physics
Russian Federation

Vladimir V. Golovanov

37 Mira av., Sarov 607188



A. S. Shirshin
Russian Federal Nuclear Center, All-Russian Scientific Research Institute of Experimental Physics
Russian Federation

Alexander S. Shirshin

37 Mira av., Sarov 607188



Yu. V. Valueva
Russian Federal Nuclear Center, All-Russian Scientific Research Institute of Experimental Physics
Russian Federation

Yulia V. Valueva

37 Mira av., Sarov 607188



V. V. Pichugin
Privolzhsky Research Medical University
Russian Federation

Vladimir V. Pichugin

10/1, Minin and Pozharsky square, Nizhniy Novgorod 603005



S. E. Domnin
Research Institute “Specialized Cardiosurgical Clinical Hospital named after Academician B.A. Koroleva”
Russian Federation

Stepan E. Domnin

209 Vaneeva street, Nizhny Novgorod 603950



A. E. Bautin
Almazov National Medical Research Center
Russian Federation

Andrey E. Bautin

2 Akkuratova str., Saint-Petersburg 197341



References

1. Patel V., Unai S., Gaudino M., Bakaeen F. Current readings on outcomes after off-pump coronary artery bypass grafting. Semin Thorac Cardiovasc Surg. 2019; 31 (4): 726–733. DOI: 10.1053/j.semtcvs.2019.05.012. PMID: 31125606.

2. Bronicki R. A., Hall M. Cardiopulmonary bypass- induced inflammatory response: pathophysiology and treatment. Pediatr Crit Care Med. 2016; 17 (8 Suppl 1): S272–278. DOI: 10.1097/PCC.0000000000000759. PMID: 27490610.

3. Wetz A. J., Richardt E. M., Schotola H., Bauer M., Bräuer A. Haptoglobin and free haemoglobin during cardiac surgeryis there a link to acute kidney injury? Anaesth Intensive Care. 2017; 45 (1): 58–66. DOI: 10.1177/0310057X1704500109. PMID: 28072936.

4. Datt V., Wadhhwa R., Sharma V., Virmani S., Minhas H. S., Malik S. Vasoplegic syndrome after cardiovascular surgery: a review of pathophysiology and outcome- oriented therapeutic management. J Card Surg. 2021; 36 (10): 3749–3760. DOI: 10.1111/jocs.15805. PMID: 34251716.

5. Di Masi A., De Simone G., Ciaccio C., D’Orso S., Coletta M., Ascenzi P. Haptoglobin: from hemoglobin scavenging to human health. Mol Aspects Med. 2020; 73: 100851. DOI: 10.1016/j.mam.2020.100851. PMID: 32660714.

6. Schaer C. A., Deuel J. W., Schildknecht D., Mahmoudi L., Garcia- Rubio I., Owczarek C., Schauer S., et al. Haptoglobin preserves vascular nitric oxide signaling during hemolysis. Am J Respir Crit Care Med. 2016; 193 (10): 1111–1122. DOI: 10.1164/rccm.201510-2058OC. PMID: 26694989.

7. Steppan J., Tran H. T., Bead V. R., Oh Y. J., Sikka G., Bivalacqua T. J., Burnett A. L., et al. Arginase inhibition reverses endothelial dysfunction, pulmonary hypertension, and vascular stiffness in transgenic sickle cell mice. Anesth Analg. 2016; 123 (3): 652–658. DOI: 10.1213/ANE.0000000000001378. PMID: 27537757.

8. Spina S., Lei C., Pinciroli R., Berra L. Hemolysis and kidney injury in cardiac surgery: the protective role of nitric oxide therapy. Semin Nephrol. 2019; 39 (5): 484–495. DOI: 10.1016/j.semnephrol.2019.06.008. PMID: 31514912.

9. Galkina S. I., Golenkina E. A., Viryasova G. M., Romanova Y. M., Sud’ina G. F. Nitric oxide in life and death of neutrophils. Curr Med Chem. 2019; 26 (31): 5764–5780. DOI: 10.2174/0929867326666181213093152. PMID: 30543162.

10. Gresele P., Momi S., Guglielmini G. Nitric oxide- enhancing or releasing agents as antithrombotic drugs. Biochem Pharmacol. 2019; 166: 300–312. DOI: 10.1016/j.bcp.2019.05.030. PMID: 31173724.

11. Zhang Y. Q., Ding N., Zeng Y.-F., Xiang Y.-Y., Yang M.-W., Hong F.-F., Yang S.-L. New progress in roles of nitric oxide during hepatic ischemia reperfusion injury. World J Gastroenterol. 2017; 23 (14): 2505–2510. DOI: 10.3748/wjg.v23.i14.2505. PMID: 28465634.

12. Loughlin . M., Browne L, Hinchion J. The impact of exogenous nitric oxide during cardiopulmonary bypass for cardiac surgery. Perfusion. 2022; 37 (7): 656–667. DOI: 10.1177/02676591211014821. PMID: 33983090.

13. Pichugin V. V., Bautin A. E., Domnin S. E., Ryazanov M. V., Sandalkin E. V. Delivery of gaseous nitric oxide to the extracorporeal circulation circuit: experimental and clinical data: a review. Ann Crit Care /Vestnik Intensivnoy Terapii im A. I. Saltanova. 2021; 3: 108–116. (in Russ.). DOI: 10.21320/1818-474X-2021-3-108-116.

14. Body S. C., FitzGerald D., Voorhees C., Hansen E., Crowley C., Voorhees M. E., Shernan S. K. Effect of nitric oxide upon gas transfer and structural integrity of a polypropylene membrane oxygenator. ASAIO J. 1999; 45 (6): 550–4. DOI: 10.1097/00002480-199911000-00008. PMID: 10593685.

15. Bautin A. E., Selemir V. D., Nurgalieva A. I., Morozov K. A., Nikiforov V. G., Biktasheva L. Z., Afanasyeva K. Yu., et al. Inhalation therapy with nitric oxide synthesized from atmospheric air in the postoperative period of cardiac surgery in children: single- center retrospective cohort study. Ann Crit Care /Vestnik Intensivnoy Terapii im AI Saltanova. 2021; 3: 98–107. (in Russ.). DOI: 10.21320/18-474X-2021–3–98–107.

16. Mazurok V. A., Nurgalieva A. I., Bautin A. E., Rzheutskaya R. E., Mazurok A. V., Orazmagomedova I. V., Gruzdova D. G., et al. Volumetric compression oscillometry for the assessment of hemodynamics in adults with corrected congenital heart defects and pulmonary arterial hypertension. Anesthesiol.Reanimatol/ Anesteziologiya i Reanimatologiya. 2022; 6: 58–67. (in Russ.). DOI: 10.17116/anaesthesiology202206158.

17. James C., Millar J., Horton S., Brizard C., Molesworth C., Butt W. Nitric oxide administration during paediatric cardiopulmonary bypass: a randomised controlled trial. Intensive Care Med. 2016; 42 (11): 1744–1752. DOI: 10.1007/s00134-016-4420-6. PMID: 27686343.

18. Kamenshchikov N. O., Anfinogenova Y. J., Kozlov B. N., Svirko Y. S., Pekarskiy S. E., Evtushenko V. V., Lugovsky V. A., et al. Nitric oxide delivery during cardiopulmonary bypass reduces acute kidney injury: a randomized trial. J Thorac Cardiovasc Surg. 2022; 163 (4): 1393–1403.e9. DOI: 10.1016/j.jtcvs.2020.03.182. PMID: 32718702.

19. Niebler R. A., Chiang- Ching H., Daley K., Janecke R., Jobe S. M., Mitchell M. E., Varner C., et al. Nitric oxide added to the sweep gas of the oxygenator during cardiopulmonary bypass in infants: a pilot randomized controlled trial. Artif Organs. 2021; 45 (1): 22–28. DOI: 10.1111/aor.13788. PMID: 32737900.

20. Schlapbach L. J., Gibbons K. S., Horton S. B., Johnson K., Long D. A., Buckley D. H.F., Erickson S., et al.; NITRIC Study Group, the Australian and New Zealand Intensive Care Society Clinical Trials Group (ANZICS CTG), and the ANZICS Paediatric Study Group (PSG). Effect of nitric oxide via cardiopulmonary bypass on ventilator-free days in young children undergoing congenital heart disease surgery: The NITRIC randomized clinical trial. JAMA. 2022; 328 (1): 38–47. DOI: 10.1001/jama.2022.9376. PMID: 35759691.

21. Lowson S. M., Hassan H. M., Rich G. F. The effect of nitric oxide on platelets when delivered to the cardiopulmonary bypass circuit. Anesth Analg. 1999; 89 (6): 1360–1365. DOI: 10.1097/00000539-199912000-00005. PMID: 10589608.


Review

For citations:


Radovskiy A.M., Vorotyntsev I.V., Atlaskin A.A., Petukhov A.N., Kryuchkov S.S., Atlaskina M.E., Stepakova A.N., Marichev A.O., Barygin E.K., Osovskikh V.V., Selemir V.D., Buranov S.N., Golovanov V.V., Shirshin A.S., Valueva Yu.V., Pichugin V.V., Domnin S.E., Bautin A.E. The Effect of High Nitric Oxide Concentrations on Oxygenators in Cardiopulmonary Bypass Machines (Experimental Study). General Reanimatology. 2024;20(1):50-62. https://doi.org/10.15360/1813-9779-2024-1-2351

Views: 604


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)