Preview

General Reanimatology

Advanced search

Destabilization of the Organized Structure of Ventricular Fibrillation During Reperfusion

https://doi.org/10.15360/1813-9779-2023-5-2338

Abstract

Aim: to study the effect of reperfusion on the organized frequency-amplitude structure of ventricular fibrillation (VF) in the dog heart.

Materials and methods. We conducted 4 experiments on 8 dogs. In each experiment, the isolated heart of one dog was perfused with the blood of the second (supporting) dog. In 4 experiments on an isolated artificially perfused heart, 6 episodes of 3 min ischemia and 10 min reperfusion of the heart were performed in VF (1–2 episodes of ischemia-reperfusion in one experiment). Each episode of 3 min ischemia in VF was preceded by a 10 min perfusion of the heart in VF. Ventricular electrogram was recorded during VF episodes. A frequencyamplitude (spectral) analysis of 1 sec segments of the electrogram was performed, and the proportion (in %) of 0.5–15 Hz frequency oscillations in 10 sec segments of the electrogram was determined in 6 episodes of perfusion, ischemia and reperfusion in VF (M±m, N=60). The VF frequency-amplitude structures during ischemia and reperfusion were compared with the stable VF frequency-amplitude structure during perfusion taken as the control. The nonparametric Welch criterion in the «The R Project for Statistical Computing» software environment was used to compare the VF parameters during perfusion, ischemia and reperfusion. 

Results. 9–10 Hz frequency oscillations dominated in the VF frequency-amplitude structure during heart perfusion, taken as the control. In the first 30 sec of ischemia, the frequency and amplitude of the dominant oscillations did not significantly change vs VF control obtained during cardiac perfusion. A decrease of dominant oscillations frequency up to 6.5–7.5 Hz, and of the proportion of oscillations — up to 26% was documented at the 3rd min of ischemia. At the 1st min of reperfusion, the frequency of dominant oscillations increased to 13.5–14.5 Hz, but the proportion of oscillations remained reduced to 26%, as at the 3rd min of ischemia. At the 2nd min of reperfusion, the frequency of dominant oscillations decreased to 9.5–10.5 Hz, and the proportion of dominant oscillations increased to 33%. The frequency and amplitude of the dominant oscillations stabilized at 3–10 min of reperfusion: oscillations at 9–10 Hz frequency accounted for 32–33% of the spectral power.

Conclusion. Reperfusion in VF is characterized by transient destabilization of VF organized structure at the 1st min of the procedure. VF organized structure regains stabilization within 2–10 min of reperfusion. Cardiac perfusion in intentionally induced VF can be used instead of cardioplegia during major cardiac surgery to boost cardiac resistance to ischemia and prevent or reduce reperfusion complications.

About the Authors

M. I. Gurianov
St. Petersburg State University; St. Petersburg Research Institute of Phthisiopulmonology, Ministry of Health of Russia
Russian Federation

Marat I. Gurianov

7–9 Universitetskaya nab., 199034 St. Petersburg

2–4 Ligovskiy pr., 191036 St. Petersburg



P. K. Yablonsky
St. Petersburg State University; St. Petersburg Research Institute of Phthisiopulmonology, Ministry of Health of Russia
Russian Federation

7–9 Universitetskaya nab., 199034 St. Petersburg

2–4 Ligovskiy pr., 191036 St. Petersburg



References

1. Lebedev D.S., Mikhailov E.N., Neminuschiy N.M., Golukhova E.Z., Babokin V.E., Bereznitskaya V.V., Vasichkina E.S., et al.Ventricular arrhythmias. Ventricular tachycardias and sudden cardiac death. 2020 Clinical guidelines. Russian Journal of Cardiology/Rossiysky Kardiologichesky Zhurnal. 2021;26(7):4600. (In Russ.). DOI:10.15829/1560-4071-2021-4600.

2. Narayan S.M., Wang P.J., Daubert J.P. New concepts in sudden cardiac arrest to address an intractable epidemic: JACC state-of-the-art review. J Am Coll Cardiol. 2019; 73 (1): 70–88. DOI:10.1016/j.jacc.2018.09.083.

3. Jenkins E.V., Dharmaprani D., Schopp M., Quah J.X., Tiver K., Mitchell L., Xiong F., et al. The inspection paradox: An important consideration in the evaluation of rotor lifetimes in cardiac fibrillation. Front Physiol. 2022; 13: 920788. DOI: 10.3389/fphys.2022.920788. PMID: 36148313

4. Rappel W.-J. The physics of heart rhythm disorders. Phys. Rep. 2022; 978: 1–45. DOI:10.1016/j.physrep.2022.06.003. PMID: 36843637

5. Huang J., Dosdall D.J., Cheng K.-A., Li L., Rogers J.M., Ideker R.E. The importance of Purkinje activation in long duration ventricular fibrillation. J Am Heart Assoc. 2014; 3 (1): e000495. DOI:10.1161/jaha.113.000495. PMID: 24584738

6. Venable P.W., Taylor T.G., Shibayama J., Warren M., Zaitsev A.V. Complex structure of electrophysiological gradients emerging during long-duration ventricular fibrillation in the canine heart. Am J Physiol Heart Circ Physiol. 2010; 299 (5): H1405–H1418. DOI:10.1152/ajpheart.00419.2010. PMID: 20802138

7. Guryanov M.I. Organized frequency structure of electrocardiogram during long-duration ventricular fibrillation under experimental conditions. Modern Technologies in Medicine/ Sovrem Tekhnologii Med. 2016; 8 (3): 37-48. (in Russ.). DOI:10.17691/stm2016.8.3.04.

8. Guryanov M.I., Pusev R.S., Guryanova N.M., Kharitonova E.A., Yablonsky P.K. Organized structure of ventricular fibrillation during prolonged heart perfusion in dogs. Modern Technologies in Medicine/ Sovrem Tekhnologii Med.. 2021; 12 (3): 26-30. (in Russ.). DOI:10.17691/stm2020.12.3.03. PMID: 34795976

9. Noujaim S.F., Berenfeld O., Kalifa J., Cerrone M., Nanthakumar K., Atienza F., Moreno J., et al. Universal scaling law of electrical turbulence in the mammalian heart. PNAS/Proc Natl Acad Sci USA. 2007; 104(52): 20985–20989. DOI:10.1073/pnas.0709758104. PMID: 18093948

10. van der Weg K., Prinzen F.W., Gorgels A.P. Editor's Choice-Reperfusion cardiac arrhythmias and their relation to reperfusion-induced cell death. Eur Heart J Acute Cardiovasc Care. 2019; 8 (2): 142-152. DOI: 10.1177/2048872618812148. PMID: 30421619

11. Masse S., Farid T., Dorian P., Umapathy K., Nair K., Asta J., Ross H., et al. Effect of global ischemia and reperfusion during ventricular fibrillation in myopathic human hearts. Am J Physiol Heart Circ Physiol. 2009; 297(6): H1984-H1991. DOI:10.1152/ajpheart.00101.2009. PMID: 19820201

12. Bradley C.P., Clayton R.H., Nash M.P., Mourad A., Hayward M., Paterson D.J., Taggart P. Human ventricular fibrillation during global ischemia and reperfusion: paradoxical changes in activation rate and wavefront complexity. Circ Arrhythm Electrophysiol. 2011; 4(5): 684-691. DOI: 10.1161/CIRCEP.110.961284. PMID: 21841193

13. Gebhard M.-M., Bretschneider H.J., Schnabel P.A. Cardioplegia principles and problems. In: Physiology and pathophysiology of the heart. Developments in cardiovascular medicine. vol 90. Springer, Boston, MA; 1989: 655–668. DOI: 10.1007/978-1-4613-0873-7_32

14. Oñate B.C.P., Meseguer M.F.-M., Carrera E.V., Muñoz S.J.J., Alberola A.G., Álvarez J.L.R. Different ventricular fibrillation types in low-dimensional latent spaces. Sensors (Basel). 2023(5); 23; 2527. DOI:10.3390/s23052527. PMID: 36904731

15. The R Project for Statistical Computing. https://www.r-project.org/. Дата обращения 27.04.2023.

16. Haissaguerre M., Cheniti G., Hocini M., Sacher F., Ramirez F.D., Cochet H., Bear L., et al. Purkinje network and myocardial substrate at the onset of human ventricular fibrillation: implications for catheter ablation. Eur Heart J. 2022; 43(12): 1234–1247. DOI: 10.1093/eurheartj/ehab893. PMID: 35134898

17. Meo M., Denis A., Sacher F., Duchâteau J., Cheniti G., Puyo S. , Bear L., et al. Insights into the spatiotemporal patterns of complexity of ventricular fibrillation by multilead analysis of body surface potential maps. Front Physiol. 2020; 11: 554838. DOI: 10.3389/fphys.2020.554838. PMID: 33071814.

18. Marin W., Marin D., Ao X., Liu Y. Mitochondria as a therapeutic target for cardiac ischemia-reperfusion injury (Review). Int J Mol Med. 2021; 47 (2): 485-499. DOI:10.3892/ijmm.2020.4823. PMID: 33416090

19. Nelson D.L., Cox M.M. Oxidative phosphorylation and photophosphorilation. In: Lehninger principles of biochemistry. W.H. Freeman and Company; 2014: 707-772.

20. Zhao T., Wu W., Sui L., Huang Q., Nan Y., Liu J., Ai K., et al. Reactive oxygen species-based nanomaterials for the treatment of myocardial ischemia reperfusion injuries. Bioact Mater. 2022; 7: 47–72. DOI:10.1016/j.bioactmat.2021.06.006. PMID: 34466716

21. Davidson S.M., Adameová A., Barile L., Cabrera-Fuentes H.A., Lazou A., Pagliaro P., Stensløkken K.-O., et al. Mitochondrial and mitochondrial-independent pathways of myocardial cell death during ischaemia and reperfusion injury. J Cell Mol Med. 2020; 24(7): 3795–3806. DOI: 10.1111/jcmm.15127. PMID: 32155321

22. Krasniqi L., Ipsen M.H., Schrøder H.D., Hejbøl E.K., Rojek A.M., Kjeldsen B.J., Riber .P. Stone heart syndrome after prolonged cardioplegia induced cardiac arrest in open-heart surgery – a pilot study on pigs. Cardiovasc Pathol. 2022; 60: 107427. DOI:10.1016/j.carpath.2022.107427. PMID: 35436604

23. Aass T., Stangeland L., Moen C.A., Solholm A., Dahle G.O., Chambers D.J., Urban M., et al. Left ventricular dysfunction after two hours of polarizing or depolarizing cardioplegic arrest in a porcine model. Perfusion. 2019; 34(1): 67–75. DOI: 10.1177/0267659118791357. PMID: 30058944

24. Nakai C., Zhang C., Kitahara H, Shults C., Waksman R., Molina E.J. Outcomes of del Nido cardioplegia after surgical aortic valve replacement and coronary artery bypass grafting. Gen Thorac Cardiovasc Surg. 2023; 71(9): 491-497. DOI:10.1007/s11748-023-01914-x. PMID: 36843184

25. Abigail W., Aboughdir M., Mahbub S., Ahmed A., Harky A. Myocardial protection in cardiac surgery: how limited are the options? A comprehensive literature review. Perfusion. 2021; 36 (4): 338-351. DOI: 10.1177/0267659120942656. PMID: 32736492

26. Zandstra T.E., Notenboom R.G.E., Wink J., Kiès P., Vliegen H.W., Egorova A.D., Schalij M.J., et al. Asymmetry and heterogeneity: part and parcel in cardiac autonomic innervation and function. Front Physiol. 2021; 12: 665298. DOI: 10.3389/fphys.2021.665298. PMID: 34603069

27. Savchuk O.I., Skibo G.G. Characteristics of nervous tissue after modeling of focal cerebral ischemia in rats at different periods of reperfusion. Reports of Morphology. 2018; 24 (3): 58-64. DOI: 10.31393/morphology-journal-2018-24(3)-09.


Review

For citations:


Gurianov M.I., Yablonsky P.K. Destabilization of the Organized Structure of Ventricular Fibrillation During Reperfusion. General Reanimatology. 2023;19(5):59-64. https://doi.org/10.15360/1813-9779-2023-5-2338

Views: 1457


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)