Current View on the Use of Extracorporeal Detoxification Methods for the Treatment of Rhabdomyolysis (Review)
https://doi.org/10.15360/1813-9779-2022-3-59-68
EDN: GZACAV
Abstract
Rhabdomyolysis is a syndrome caused by destruction and necrosis of muscle tissue, which is accompanied by the release of intracellular contents into the systemic circulation. The etiology of rhabdomyolysis is multifaceted, however, regardless of the etiological factor, the central element of its pathophysiology is systemic endotoxemia with multiple organ failure syndrome. Acute renal failure is one of the most common manifestations of organ dysfunction. Considering the pathogenetic model of the development of systemic endotoxemia, the timely use of extracorporeal therapy, which reduces mortality in organ failure, seems promising. All the current types of extracorporeal therapy can be divided into convection (hemofiltration), diffusion (hemodialysis), convection/diffusion (hemodiafiltration), sorption (hemoperfusion) and plasma exchange (plasmapheresis, plasma exchange, plasma sorption, etc.) methods based on physical principle.
The aim of the review was to summarize the available clinical data on extracorporeal treatments for rhabdomyolysis and to assess the feasibility and best indications for these methods based on the current pathogenetic model of rhabdomyolysis.
Material and methods. The search for information was carried out in the Web of Science, Scopus, Medline, PubMed, RSCI, E-library and other databases. Eighty-one sources were identified containing current therapeutic approaches and relevant data of clinical and scientific research on the subject of this review.
Results. In this review, the main etiological, epidemiological and pathogenetic models of acute renal injury in rhabdomyolysis have been discussed. The main methods of extracorporeal therapy have been reviewed and evaluated based on current understanding, and latest clinical data on their effectiveness have been summarized.
Conclusion. The choice of the optimal extracorporeal treatment method, the time of initiation and duration of the procedure still remain controversial. The solution to this issue can potentially help to better correct the electrolyte disturbances and could protect against organ dysfunction, which would improve the outcome in patients with rhabdomyolysis.
About the Authors
S. V. MasolitinRussian Federation
Sergey V. Masolitin
8 Leninsky Ave., 119049 Moscow
D. N. Protsenko
Russian Federation
Denis N. Protsenko
8 Sosensky Stan Str.. Kommunarka settlement, 108814 Moscow
1 Ostrovityanov Str., 117997 Moscow
I. N. Tyurin
Russian Federation
Igor N. Tyurin
8 Sosensky Stan Str.. Kommunarka settlement, 108814 Moscow
O. A. Mamontova
Russian Federation
Olga A. Mamontova
1 Ostrovityanov Str., 117997 Moscow
M. A. Magomedov
Russian Federation
Marat A. Magomedov
8 Leninsky Ave., 119049 Moscow
1 Ostrovityanov Str., 117997 Moscow
References
1. Saverymuthu A., Teo R., Zain J.M., Cheah S.K., Yusof A.M., Rahman R.A. Acute kidney injury following rhabdomyolysis in critically ill patients. J Crit Care Med (Targu Mures). 2021; 7 (4): 267–271. DOI: 10.2478/jccm-2021-0025. PMID: 34934816.
2. Flynn Makic M.B. Rhabdomyolysis: recognizing risks. J Perianesth Nurs. 2019; 34 (6): 1282–1283. DOI: 10.1016/j.jopan.2019.08.001. PMID: 31619324.
3. Kim H.W., Kim S., Ohn J.H., Kim N-H, Lee J., Kim E.S., Lim Y., Cho J.H., Park H.S., Ryu J., Kim S.W. Role of bicarbonate and volume therapy in the prevention of acute kidney injury in rhabdomyolysis: a retrospective propensity score-matched cohort study. Kidney Res Clin Pract. 2021 Dec 2. Online ahead of print. DOI: 10.23876/j.krcp.21.093. PMID: 34974654.
4. Riccardi J., Fredericks C.J., Callcut R.A. Trauma and COVID-induced severe rhabdomyolysis. Am Surg. 2022; 88 (5): 1003–1005. DOI: 10.1177/00031348211063569. PMID: 34957839.
5. Stahl K., Rastelli E., Schoser B. A systematic review on the definition of rhabdomyolysis. J Neurol. 2020; 267 (4): 877–882. DOI: 10.1007/s00415-019-09185-4. PMID: 30617905.
6. Albaba I., Chopra A., Al-Tarbsheh A.H., Feustel P.J., Mustafa M., Oweis J., Parimi S,A., Santelises Robledo F.M., Mehta S. Incidence, risk factors, and outcomes of rhabdomyolysis in hospitalized patients with COVID-19 infection. Cureus. 2021; 13 (11): e19802. DOI: 10.7759/cureus.19802. PMID: 34956789.
7. Paternostro C., Gopp L., Tomschik M., Krenn M., Weng R., Bointner K., Jäger F., Zulehner G., Rath J., Berger T., Zimprich F., Cetin H. Incidence and clinical spectrum of rhabdomyolysis in general neurology: a retrospective cohort study. Neuromuscul Disord. 2021; 31 (12): 1227–1234. DOI: 10.1016/j.nmd.2021.09.012. PMID: 34711480.
8. Parish L.P., Cutshall T., Duhart B. Acute kidney injury and rhabdomyolysis due to ticagrelor and rosuvastatin. Nurse Pract. 2021; 46 (11): 12–16. DOI: 10.1097/01.NPR.0000794540.96561.51. PMID: 34695045.
9. Somagutta M.R., Pagad S., Sridharan S., Nanthakumaran S., Arnold A.A., May V., Malik B.H. Role of bicarbonates and mannitol in rhabdomyolysis: a comprehensive review. Cureus. 2020; 12 (8): e9742. DOI: 10.7759/cureus.9742. PMID: 32944457.
10. Osborn H., Grossman D., Kochhar S., Kanukuntla A., Kata P., Cheriyath P. A rare case of delayed onset multi-drug interaction resulting in rhabdomyolysis in a 66-year-old male. Cureus. 2021; 13 (11): e20035. DOI: 10.7759/cureus.20035. PMID: 34987920.
11. Maheshwari M., Athiraman H. «Speedballing» to severe rhabdomyolysis and hemodialysis in a 27-year-old male. Cureus. 2021; 13 (12): e20667. DOI: 10.7759/cureus.20667. PMID: 34976547.
12. Kodikara P., Walker R., Wilson S. Renal physiology and kidney injury during intense (CrossFit®) exercise. Intern Med J. 2021 Dec 22. Online ahead of print. DOI: 10.1111/imj.15667. PMID: 34935262.
13. Wilson M.T., Reeder B.J. The peroxidatic activities of myoglobin and hemoglobin, their pathological consequences and possible medical interventions. Mol Aspects Med. 2022; 84: 101045. DOI: 10.1016/j.mam.2021.101045. PMID: 34654576.
14. Sawhney J.S., Kasotakis G., Goldenberg A., Abramson S., Dodgion C., Patel N., Khan M., Como J.J. Management of rhabdomyolysis: a practice management guideline from the Eastern Association for the Surgery of Trauma. Am J Surg. 2021; S0002-9610 (21)00681-4. DOI: 10.1016/j.amjsurg.2021.11.022. PMID: 34836603.
15. Hui W.F., Hon K.L., Lun K.S., Leung K.K.Y., Cheung W.L., Leung A.K.C. Successful treatment of rhabdomyolysis-associated acute kidney injury with haemoadsorption and continuous renal replacement therapy. Case Rep Pediatr. 2021; 2021: 2148024. DOI: 10.1155/2021/2148024. PMID: 34646583.
16. Long B., Koyfman A., Gottlieb M. An evidence-based narrative review of the emergency department evaluation and management of rhabdomyolysis. Am J Emerg Med. 2019; 37 (3): 518–523. DOI: 10.1016/j.ajem.2018.12.061. PMID: 30630682.
17. Lee G.X., Duong D.K. Rhabdomyolysis: evidence-based management in the emergency department. Emerg Med Pract. 2020; 22 (12): 1–20. PMID: 33211443.
18. Gupta N., Nusbaum J. Points & pearls: rhabdomyolysis: evidencebased management in the emergency department. Emerg Med Pract. 2020; 22 (Suppl 12): 1–2. PMID: 33259708.
19. Long B., Targonsky E., Koyfman A. Just the facts: diagnosis and management of rhabdomyolysis. CJEM. 2020; 22 (6): 745–748. DOI: 10.1017/cem.2020.37. PMID: 32390586.
20. Ankawi G., Xie Y., Yang B., Xie Y., Xie P., Ronco C. What have we learned about the use of cytosorb adsorption columns? Blood Purif. 2019; 48 (3): 196–202. DOI: 10.1159/000500013. PMID: 31039564.
21. Жарский С.Л., Слободянюк О.Н., Слободянюк С.Н. Рабдомиолиз, связанный с физической нагрузкой у лиц молодого возраста. Клиническая медицина. 2013; 3: 62–65.
22. Bagley W.H., Yang H., Shah K.H. Rhabdomyolysis. Intern Emerg Med. 2007; 2 (3): 210–218. DOI: 10.1007/s11739-007-0060-8. PMID: 17909702.
23. Chavez L.O, Leon M., Einav S., Varon J. Beyond muscle destruction: a systematic review of rhabdomyolysis for clinical practice. Crit Care. 2016; 20 (1): 135. DOI: 10.1186/s13054-016-1314-5. PMID: 27301374.
24. Bosch X., Poch E., Grau J.M. Rhabdomyolysis and acute kidney injury. N. Engl. J. Med. 2009; 361 (1): 62-72. DOI: 10.1056/NEJMra0801327. PMID: 19571284.
25. Taxbro K., Kahlow H., Wulcan H., Fornarve A. Rhabdomyolysis and acute kidney injury in severe COVID-19 infection. BMJ Case Rep. 2020; 13 (9): 237616. DOI: 10.1136/bcr-2020-237616. PMID: 32878841.
26. Warren J.D., Blumbergs P.C., Thompson P.D. Rhabdomyolysis: a review. Muscle Nerve. 2002: 332–347. DOI: 10.1002/mus.10053. PMID: 11870710.
27. Panizo N., Rubio-Navarro A., Amaro-Villalobos J.M. Egido J., Moreno J.A. Molecular mechanisms and novel therapeutic approaches to rhabdomyolysis-induced acute kidney injury. Kidney Blood Press. Res. 2015; 40 (5): 520–532. DOI: 10.1159/000368528. PMID: 26512883.
28. Petejova N., Martinek A. Acute kidney injury due to rhabdomyolysis and renal replacement therapy: a critical review. Crit. Care. 2014; 18 (3): 224. DOI: 10.1186/cc13897. PMID: 25043142.
29. Kwiatkowska M., Chomicka I., Malyszko J. Rhabdomyoisis — induced acute kidney injury — an underestimated problem. Wiad. Lek. 2020; 73 (11): 2543–2548. PMID: 33454698.
30. Oshima Y. Characteristics of drug-associated rhabdomyolysis: analysis of 8,610 cases reported to the U.S. Food and Drug Administration. Intern. Med. 2011; 50 (8): 845–853. DOI: 10.2169/internalmedicine.50.4484. PMID: 21498932.
31. Debelmas A., Benchetrit D., Galanaud D., Khonsari R.H. Case 251: nontraumatic drug-associated rhabdomyolysis of head and neck muscles. Radiology. 2018; 286 (3): 1088–1092. DOI: 10.1148/radiol.2018152594. PMID: 29461948.
32. Nelson D.A., Deuster P.A., Carter R., Hill O.T., Woolcott V.L., Kurina L.M. Sickle cell trait, rhabdomyolysis, and mortality among U.S. army soldiers. N. Engl. J. Med. 2016; 375 (5): 435–442. DOI: 10.1056/NEJMoa1516257. PMID: 27518662.
33. Gordon W.T., Talbot M., Shero J.C., Osier C.J., Johnson A.E., Balsamo L.H., Stockinger Z.T. Acute extremity compartment syndrome and the role of fasciotomy in extremity war wounds. Mil Med. 2018; 183 (suppl_2): 108–111. DOI: 10.1093/milmed/usy084. PMID: 30189076.
34. Rawson E.S., Clarkson P.M., Tarnopolsky M.A. Perspectives on exertional rhabdomyolysis. Sports Med. 2017; 47: 33–49. DOI: 10.1007/s40279-017-0689-z. PMID: 28332112.
35. Meyer M., Sundaram S., Schafhalter-Zoppoth I. Exertional and crossfit-induced rhabdomyolysis. Clin J Sport Med. 2018; 28 (6): 92–94. DOI: 10.1097/JSM.0000000000000480. PMID: 28727638.
36. Fernandes P.M., Davenport R.J. How to do it: investigate exertional rhabdomyolysis (or not). Pract Neurol. 2019; 19 (1): 43–48. DOI: 10.1136/practneurol-2018-002008. PMID: 30305378.
37. Kaur H., Katyal N., Yelam A. Kumar K., Srivastava H., Govindarajan R. Malignant hyperthermia. Mo Med. 2019; 116 (2): 154–159. PMID: 31040503.
38. Yang C.W., Li S., Dong Y., Paliwal N., Wang Y. Epidemiology and the impact of acute kidney injury on outcomes in patients with rhabdomyolysis. J Clin Med. 2021; 10 (9): 1950. DOI: 10.3390/jcm10091950. PMID: 34062839.
39. Хорошилов С.Е., Никулин А.В. Патогенез, диагностика и эфферентное лечение рабдомиолиза, осложненного острой почечной недостаточностью. Тверской медицинский журнал. 2017; 5: 45–51. eLIBRARY ID: 30022440.
40. Tehrani P. P., Malek H. Early detection of rhabdomyolysis-induced acute kidney injury through machine learning approaches. Arch Acad Emerg Med. 2021; 9 (1): 29. DOI: 10.22037/aaem.v9i1.1059. PMID: 34027424.
41. Baeza-Trinidad R., Brea-Hernando A., Morera-Rodriguez S., BritoDiaz Y., Sanchez-Hernandez S., El Bikri L., Ramalle-Gomara E., Garcia-Alvarez J.L. Creatinine as predictor value of mortality and acute kidney injury in rhabdomyolysis. Intern Med J. 2015; 45 (11): 1173–1178. DOI: 10.1111/imj.12815. PMID: 26010490.
42. Michelsen J., Cordtz J., Liboriussen L., Behzadi M.T., Ibsen M., Damholt M.B., Møller M.H., Wiis J. Prevention of rhabdomyolysis‐induced acute kidney injury — A DASAIM/DSIT clinical practice guideline. Acta Anaesthesiol Scand. 2019; 63 (5): 576–586. DOI: 10.1111/aas.13308. PMID: 30644084.
43. Holt S., Moore K. Pathogenesis of renal failure in rhabdomyolysis: the role of myoglobin. Exp Nephrol. 2000; 8 (2): 72–76. DOI: 10.1159/000020651. PMID: 10729745.
44. Kasaoka S., Todani M., Kaneko T., Kawamura Y., Oda Y., Tsuruta R., Maekawa T. Peak value of blood myoglobin predicts acute renal failure induced by rhabdomyolysis. J Crit Care. 2010; 25 (4): 601–604. DOI: 10.1016/j.jcrc.2010.04.002. PMID: 20537502.
45. Zorova L.D., Pevzner I.B., Chupyrkina A.A., Zorov S.D., Silachev D.N., Plotnikov E.Y., Zorov D.B. The role of myoglobin degradation in nephrotoxicity after rhabdomyolysis. Chem Biol Interact. 2016; 256: 64–70. DOI: 10.1016/j.cbi.2016.06.020. PMID: 27329933.
46. Ahmed M., Frederickson J., Khan K., Bashir K. Rhabdomyolysis after total abdominal hysterectomy requiring urgent hemodialysis due to hyperkalemia. Cureus. 2021; 13 (4): 14757. DOI: 10.7759/cureus.14757. PMID: 34084681.
47. Chavez L.O., Leon M., Einav S., Varon J. Beyond muscle destruction: a systematic review of rhabdomyolysis for clinical practice. Crit Care. 2016; 20 (1): 135. DOI: 10.1186/s13054-016-1314-5. PMID: 27301374.
48. Buitendag J.J.P., Patel M.Q., Variawa S., Fichardt J., Mostert B., Goliath A., Clarke D.L., Oosthuizen G.V. Venous bicarbonate and creatine kinase as diagnostic and prognostic tools in the setting of acute traumatic rhabdomyolysis. S Afr Med J. 2021; 111 (4): 333–337. DOI: 10.7196/SAMJ.2021.v111i4.14915. PMID: 33944766.
49. Ahmad S., Anees M., Elahi I., Fazal-E-Mateen. Rhabdomyolysis leading to acute kidney injury. J Coll Physicians Surg Pak. 2021; 31 (2): 235–237.DOI: 10.29271/jcpsp.2021.02.235. PMID: 33645199.
50. Vanholder R., Sükrü Sever M., Lameire N. Kidney problems in disaster situations. Nephrol Ther. 2021; 17S: S27-36. DOI: 10.1016/j.nephro.2020.02.009. PMID: 33910695.
51. Ronco C. Extracorporeal therapies in acute rhabdomyolysis and myoglobin clearance. Crit Care. 2005; 9 (2): 141–142. DOI: 10.1186/cc3055. PMID: 15774064.
52. Donati G., Cappuccilli M., Di Filippo F., Nicoletti S., Ruggeri M., Scrivo A., Angeletti A., La Manna G. The use of supra-hemodiafiltration in traumatic rhabdomyolysis and acute kidney injury: a case report. Case Rep Nephrol Dial. 2021; 11 (1): 26–35. DOI: 10.1159/000507424. PMID: 33708797.
53. Guzman N., Podoll A.S., Bell C.S., Finkel K.W. Myoglobin removal using high-volume high-flux hemofiltration in patients with oliguric acute kidney injury. Blood Purif. 2013; 36 (2): 107–111. DOI: 10.1159/000354727. PMID: 24080745.
54. Masakane I., Sakurai K. Current approaches to middle molecule removal: room for innovation. Nephrol Dial Transplant. 2018; 33 (3): iii12–iii21. DOI: 10.1093/ndt/gfy224. PMID: 30281129.
55. Heyne N., Guthoff M., Krieger J., Haap M., Häring H-U. High cut-off renal replacement therapy for removal of myoglobin in severe rhabdomyolysis and acute kidney injury: a case series. Nephron Clin Pract. 2012; 121 (3–4): 159–164. DOI: 10.1159/000343564. PMID: 23327834.
56. Naka T., Jones D., Baldwin I., Fealy N., Bates S., Goehl H., Morgera S., Neumayer H.H., Bellomo R. Myoglobin clearance by super highflux hemofiltration in a case of severe rhabdomyolysis: a case report. Crit Care. 2005; 9 (2): R90–95. DOI: 10.1186/cc3034. PMID: 15774055.
57. Zhang L., Kang Y., Fu P., Cao Y., Shi Y., Liu F., Hu Z., Su B, Tang W., Qin W. Myoglobin clearance by continuous venous-venous haemofiltration in rhabdomyolysis with acute kidney injury: a case series. Injury. 2012; 43 (5): 619–623. DOI: 10.1016/j.injury.2010.08.031. PMID: 20843513.
58. Weidhase L., Haussig E., Haussig S., Kaiser T., de Fallois J., Petros S. Middle molecule clearance with high cut-off dialyzer versus highflux dialyzer using continuous veno-venous hemodialysis with regional citrate anticoagulation: a prospective randomized controlled trial. PLoS One. 2019; 14 (4): 0215823. DOI: 10.1371/journal.pone.0215823. PMID: 31026303.
59. Бельских А.Н., Захаров М.В., Марухов А.В., Корольков О.А. Сравнение эффективности методов экстракорпоральной детоксикации при лечении постнагрузочного рабдомиолиза, осложненного острым почечным повреждением. Военно-медицинский журнал. 2019; 340 (6): 49–54. DOI: 10.17816/RMMJ81896.
60. Premru V., Kovač J., Buturović-Ponikvar J., Ponikvar R. Some kinetic considerations in high cut-off hemodiafiltration for acute myoglobinuric renal failure. Ther Apher Dial. 2013: 17 (4): 396–401. DOI: 10.1111/1744-9987.12085. PMID: 23931878.
61. Albert C., Haase M., Bellomo R., Mertens P.R. High cut-off and highflux membrane haemodialysis in a patient with rhabdomyolysisassociated acute kidney injury. Crit Care Resusc. 2012; 14 (2): 159–162. PMID: 22697626.
62. Weidhase L., de Fallois J., Haußig E., Kaiser T., Mende M., Petros S. Myoglobin clearance with continuous veno-venous hemodialysis using high cutoff dialyzer versus continuous veno-venous hemodiafiltration using high-flux dialyzer: a prospective randomized controlled trial. Crit Care. 2020; 24 (1): 644. DOI: 10.1186/s13054020-03366-8. PMID: 33176824.
63. Gubensek J., Persic V., Jerman A., Premru V. Extracorporeal myoglobin removal in severe rhabdomyolysis with high cut-off membranes-intermittent dialysis achieves much greater clearances than continuous methods. Crit Care. 2021; 25 (1): 97. DOI: 10.1186/s13054-021-03531-7. PMID: 3375039.
64. Конева О.А., Руденко М.Ю., Ганич Э.С. Случай успешного раннего применения плазмафереза при рабдомиолизе. Нефрология и диализ. 2001; 3 (2): 197.
65. Завертайло Л.Л., Мальков О.А. Случай успешного лечения синдрома позиционного сдавления, осложнившегося паренхиматозной ОПН, сочетанным применением эфферентных методик НПЗП и плазмафереза (клиническое наблюдение). Интенсивная терапия. 2005; 1: 3–9.
66. Swaroop R., Zabaneh R., Parimoo N. Plasmapheresis in a patient with rhabdomyolysis: a case report. Cases J. 2009; 2: 8138. DOI: 10.4076/1757-1626-2-8138. PMID: 19918458.
67. Теплова Н.Н. Рабдомиолиз в клинической практике. Вятский медицинский вестник. 2016; 52 (4): 37–45. eLIBRARY ID: 28789214.
68. Szczepiorkowski Z.M., Winters J.L., Bandarenko N., Kim H.C., Linenberger M.L., Marques M.B., Sarode R., Schwartz J., Weinstein R., Shaz B.H. Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the Apheresis Applications Committee of the American Society for Apheresis. J Clin Apher. 2010; 25 (3): 83–177. DOI: 10.1002/jca.20240. PMID: 20568098.
69. Yang K.C., Fang C.C., Su T.C., Lee Y.T. Treatment of fibrate-induced rhabdomyolysis with plasma exchange in ESRD. Am J Kidney Dis. 2005; 45 (3): 57–60. DOI: 10.1053/j.ajkd.2004.12.003. PMID: 15754265.
70. Федорова А.А., Кутепов Д.Е., Зубарев А.В., Пасечник И.Н., Хабарина Н.В. Рабдомиолиз: что нового в диагностике и лечении? Кремлевская медицина. Клинический вестник. 2020; 2: 102–109. DOI: 10.26269/4n94-0746.
71. Ogawa T., Yoshino H., Sasaki Y., Kanayama Y., Sano T., Kogure Y., Kanozawa K., Hasegawa H. Our approaches to selective plasma exchange. Contrib Nephrol. 2018; 196: 194–199. DOI: 10.1159/000485722. PMID: 30041227.
72. Taniguchi K., Miyahara T. EVACURETM — membrane plasma separator with unique permeability properties. Med Sci Digest. 2002; 28 (6): 29–33.
73. Li M., Xue J., Liu J., Kuang D., Gu Y., Lin S. Efficacy of cytokine removal by plasmadiafiltration using a selective plasma separator: in vitro sepsis model. Ther Apher Dial. 2011; 15 (1): 98–108. DOI: 10.1111/j.1744-9987.2010.00850.x. PMID: 21272259.
74. Tan E.X., Wang M.X., Pang J., Lee G.H. Plasma exchange in patients with acute and acute-on-chronic liver failure: a systematic review. World J Gastroenterol. 2020; 26 (2): 219–245. DOI: 10.3748/wjg.v26.i2.219. PMID: 31988586.
75. Bonavia A., Groff A., Karamchandani K., Singbartl K. Clinical utility of extracorporeal cytokine hemoadsorption therapy: a literature review. Blood Purif. 2018; 46 (4): 337–349.DOI: 10.1159/000492379. PMID: 30176653.
76. Poli E.C., Rimmelé T., Schneider A.G. Hemoadsorption with CytoSorb®. Intensive Care Med. 2019; 45 (2): 236–239. DOI: 10.1007/s00134-018-5464-6. PMID: 30446798.
77. Zuccari S., Damiani E., Domizi R., Scorcella C., D’Arezzo M., Carsetti A., Pantanetti S., Vannicola S., Casarotta E., Ranghino A., Donati A., Adrario E. Changes in cytokines, haemodynamics and microcirculation in patients with sepsis/septic shock undergoing continuous renal replacement therapy and blood purification with CytoSorb. Blood Purif. 2020; 49 (1–2): 107–113. DOI: 10.1159/000502540. PMID: 31434083.
78. Dilken O., Ince C., van der Hoven B., Thijsse S., Ormskerk P., de Geus H.R.H. Successful reduction of creatine kinase and myoglobin levels in severe rhabdomyolysis using extracorporeal blood purification (CytoSorb®). Blood Purif. 2020; 49 (6): 743–747. DOI: 10.1159/000505899. PMID: 32114569.
79. Padiyar S., Deokar A., Birajdar S., Walawalkar A., Doshi H. Cytosorb for management of acute kidney injury due to rhabdomyolysis in a child. Indian Pediatr. 2019; 56 (11): 974–976. PMID: 31729332.
80. Lang C.N., Sommer M.J., Neukamm M.A., Staudacher D.L., Supady A., Bode C., Duerschmied D., Lother A. Use of the CytoSorb adsorption device in MDMA intoxication: a first-in-man application and in vitro study. Intensive Care Med Exp. 2020; 8 (1): 21. DOI: 10.1186/s40635-020-00313-3. PMID: 32542550.
81. Scharf C., Liebchen U., Paal M., Irlbeck M., Zoller M., Schroeder I. Blood purification with a cytokine adsorber for the elimination of myoglobin in critically ill patients with severe rhabdomyolysis. Crit. Care. 2021; 25 (1): 41. DOI: 10.1186/s13054-021-03468-x. PMID: 33509234.
Review
For citations:
Masolitin S.V., Protsenko D.N., Tyurin I.N., Mamontova O.A., Magomedov M.A. Current View on the Use of Extracorporeal Detoxification Methods for the Treatment of Rhabdomyolysis (Review). General Reanimatology. 2022;18(3):59-68. https://doi.org/10.15360/1813-9779-2022-3-59-68. EDN: GZACAV