Influence of Stress Resistance on Myocardial Expression of the Pro-Autophagic Protein Beclin-1 After Cardiac Contusion in Experimental Setting
https://doi.org/10.15360/1813-9779-2023-6-54-61
Abstract
Objective. Evaluation of myocardial expression of the pro-autophagic protein Beclin-1 after cardiac contusion in experimental animals with different stress resistance.
Materials and methods. The study included 68 white mongrel male rats weighing 250–300 g. After ranking for extreme variants of stress resistance, moderately stress-resistant rats (N=36) were excluded from the study. The remaining animals were split into the control (N=16) and study (N=16) groups, each group composed of 8 high stress resistant and 8 low stress resistant rats. In the study group, 24 hours after inflicted cardiac contusion, 5×5 mm myocardial tissue specimens were sampled from the intraventricular septum, anterior walls of the left and right ventricles, histological sections were made, and a reaction with primary polyclonal Anti-Beclin-1 antibodies was performed. Beclin-1 expression was evaluated under the microscope.
Results. Immunohistochemical evaluation revealed a statistically significant increase in Beclin-1 protein expression (P=0.0002) in the cytoplasm of cardiomyocytes in the study group vs the control group, regardless of animals’ baseline stress resistance. However, expression of Beclin-1 protein in the myocardium of highly stress-resistant rats (Me=4.3; LQ=4.0; HQ=4.3) was significantly higher versus low-resistant animals (Me=3.6; LQ=3.3; HQ=3.6) (P=0.0009).
Conclusion. Increased expression of Beclin-1 protein in the post-traumatic period of experimental cardiac contusion indicates autophagic flux activation. Intensity of autophagy varied depending on the animal’s stress resistance.
About the Authors
E. I. KlyuchnikovaRussian Federation
Evgenia I. Klyuchnikova
12 Lenin Str., 644099 Omsk
O. V. Korpacheva
Russian Federation
Olga V. Korpacheva
12 Lenin Str., 644099 Omsk
S. I. Mozgovoy
Russian Federation
Sergey I. Mozgovoy
12 Lenin Str., 644099 Omsk
A. N. Zolotov
Russian Federation
Alexander N. Zolotov
12 Lenin Str., 644099 Omsk
A. V. Kononov
Russian Federation
Alexey V. Kononov
12 Lenin Str., 644099 Omsk
References
1. Novoselov V.P., Savchenko S.V., Koshliak D.A., Voronkovskaia M.V., Stepanishchev I.V. Assessment of ultrastructural changes in the contractile apparatus of cardiomyocytes after heart contusion. Sud Med Ekspert. 2010; 53 (2): 13–15. (In Russ.). PMID: 20560503.
2. Priymak A.B., Korpacheva O.V., Zolotov A.N. Unresolved issues of pathogenesis of myocardial contusion. Vestnik SurGU. Medicina. 2020; 44 (2): 66–72. (In Russ.). DOI: 10.34822/2304-9448-2020-2-66-72.
3. Guan D.-W., Zhang X.-G., Zhao R., Lu B., Han Y., Hou Z.-H., Jia J.T. Diverse morphological lesions and serious arrhythmias with hemodynamic insults occur in the early myocardial contusion due to blunt impact in dogs. Forensic Sci Int. 2007; 166 (1): 49–57. DOI: 10.1016/j.forsciint.2006.03.028. PMID: 16697542.
4. Novoselov V.P., Savchenko S.V., Koshliak D.A., Voronkovskaia M.V. Histochemical study of the myocardium structure in the heart contusion. Morfologiia. 2009; 136 (6): 53–56. (In Russ.). PMID: 20358774.
5. Acýpayam A., Eser N., Yaylalý A., Karacaoðlu Ý.C., Yoldas A., Tolun F.I., Aksu E. Effects of amifostine against blunt chest trauma-induced cardiac injury in rats. Ulus Travma Acil Cerrahi Derg. 2023; 29 (3): 266–276. DOI: 10.14744/tjtes.2023.84308. PMID: 36880625.
6. Blagonravov M.L., Korshunova A.Y., Azova M.M., Bondar‘ S.A., Frolov V.A. Cardiomyocyte autophagia and morphological alterations in the left ventricular myocardium during acute focal ischemia. Bull Exp Biol Med. 2016; 160 (3): 398–400. (In Russ.)]. DOI: 10.1007/S10517-016-3180-1. PMID: 26742735.
7. Priymak A.B., Korpacheva O.V., Zolotov A.N., Novikov D.G. Strategies for adaptation in rats with various stress resistance after myocardial contusion. Vestnik SurGU. Medicina. 2021; 50 (4): 110–116. (In Russ.). DOI: 10.34822/2304-9448-2021-4-110-116.
8. Kuznetsov A.I., Vasilyeva T.A. Influence of the tonus of sympatho-adrenal and hypothalamic-pituitary-adrenal system on the function of hepatogenic organs in dogs with different stress sensibility. Izvestia Orenburg State Agrarian University. 2019; 79 (5): 185–188. (In Russ.).
9. Priymak A.B., Korpacheva O.V., Zolotov A.N., Klyuchnikova E.I. The method of ranking rats by stress resistance and sample size determination in experimental heart contusion. Current Problems of Science and Education/Sovremenniye Problemy Nauki i Obrazovaniya. 2022; 4: 120. (In Russ.). DOI: 10.17513/spno.31965.
10. Patent № 374227 Russian Federation, MPK G09D9/00 (2000.01). Mechanism for myocardial contusion simulation in small laboratory animals (useful model): № 2003133897/20 (036729); claim 24.11.03; published 20.04.04. Dolgikh V.T., Korpacheva O.V., Ershov A.V.; applicant and assignee Omsk State Medical Academy; 3 p.
11. Patent № 2799815 C1 Russian Federation, MPК G01N 33/50, G01N 1/30, A61B 5/0. Мethod of macroscopic panoptic visualization of lesions and calculation of the volume of damaged myocardium when modeling a heart contusion (useful model): № 2023111413; claim 03.05.23; published 12.07.23. Klyuchnikova E.I., Zolotov A.N., Korpacheva O.V., Mozgovoi S.I., Khramykh T.P., Ermolaev P.A.; applicant and assignee Omsk State Medical University; 13 p.
12. He C., Levine B. The Beclin 1 interactome. Curr Opin Cell Biol. 2010; 22 (2): 140–149. DOI: 10.1016/j.ceb.2010.01.001. PMID: 20097051.
13. Maejima Y., Isobe M., Sadoshima J. Regulation of autophagy by Beclin 1 in the heart. J Mol Cell Cardiol. 2016; 95: 19–25. DOI: 10.1016/j.yjmcc.2015.10.032. PMID: 26546165.
14. Tran S., Fairlie W.D., Lee E.F. BECLIN1: protein structure, function and regulation. Cells. 2021; 10 (6): 1522. DOI: 10.3390/cells10061522. PMID: 34204202.
15. Guo Q.Q., Wang S.-S., Zhang S.-S., Xu H.-D., Li X.-M., Guan Y., Yi F., et al. ATM-CHK2-Beclin 1 axis promotes autophagy to maintain ROS homeostasis under oxidative stress. EMBO J. 2020; 39 (10): e103111. DOI: 10.15252/embj.2019103111. PMID: 32187724.
16. Gao Q. Oxidative stress and autophagy. In: Qin Z.-H. (eds.). Autophagy: biology and diseases. Advances in experimental medicine and biology. Springer, Singapore; 2019; 1206: 179–198. DOI: 10.1007/978-981-15-0602-4_9. ISBN: 978-981-15-0601-7.
17. Saikia R., Joseph J. AMPK: a key regulator of energy stress and calcium-induced autophagy. J Mol Med (Berl). 2021; 99 (11): 1539–1551. DOI: 10.1007/s00109-021-02125-8. PMID: 34398293.
18. Filomeni G., De Zio D., Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 2015; 22 (3): 377–388. DOI: 10.1038/cdd.2014.150. PMCID: PMC4326572.
19. Wang Y., Zhang H. Regulation of autophagy by mTOR signaling pathway. In: Qin Z.-H. (eds.). Autophagy: biology and diseases. Advances in experimental medicine and biology. Springer, Singapore; 2019; 1206: 67–83. DOI: 10.1007/978-981-15-0602-4_3. ISBN: 978-981-15-0601-7.
20. Viscomi M.T., D’Amelio M., Cavallucci V., Latini L., Bisicchia E., Nazio F., Fanelli F., et al. Stimulation of autophagy by rapamycin protects neurons from remote degeneration after acute focal brain damage. Autophagy. 2012; 8 (2): 222–235. DOI: 10.4161/auto.8.2.18599. PMID: 22248716
21. Sakai K., Fukuda T., Iwadate K. Immunohistochemical analysis of the ubiquitin proteasome system and autophagy lysosome system induced after traumatic intracranial injury: association with time between the injury and death. Am J Forensic Med Pathol. 2014; 35 (1): 38–44. DOI: 10.1097/PAF.0000000000000067. PMID: 24317096.
22. He M., Ding Y., Chu C., Tang J., Xiao Q., Luo Z.G. Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury. Proc Natl Acad Sci U S A. 2016; 113 (40): 11324–11329. DOI: 10.1073/pnas.1611282113. PMID: 27638205.
23. Chen Y., Zhang W., Guo X., Ren J., Gao A. The crosstalk between autophagy and apoptosis was mediated by phosphorylation of Bcl-2 and beclin1 in benzene-induced hematotoxicity. Cell Death Dis. 2019; 10 (10): 772. DOI: 10.1038/s41419-019-2004-4. PMID: 31601785.
24. Yang J., Zhou R., Ma Z. Autophagy and energy metabolism. In: Qin Z.-H. (eds.). Autophagy: biology and diseases. Advances in experimental medicine and biology. Springer, Singapore; 2019; 1206: 329-357. DOI: 10.1007/978-981-15-0602-4_16. ISBN: 978-981-15-0601-7.
25. Hu Y.-X., Han X.-S., Jing Q. Ca (2+) Ion and Autophagy. In: Qin Z.-H. (eds.). Autophagy: biology and diseases. Advances in experimental medicine and biology. Springer, Singapore; 2019; 1206: 151-166. DOI: 10.1007/978-981-15-0602-4_7. ISBN: 978-981-15-0601-7.
26. Ballabio A., Bonifacino J.S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat Rev Mol Cell Biol. 2020; 21 (2): 101–118. DOI: 10.1038/s41580-019-0185-4. PMID: 31768005.
27. Zhu Y., Zhao L., Liu L., Gao P., Tian W., Wang X., Jin H., et al. Beclin 1 cleavage by caspase-3 inactivates autophagy and promotes apoptosis. Protein Cell. 2010; 5 (1): 468–477. DOI: 10.1007/s13238-010-0048-4. PMID: 21203962.
28. Cho D.-H., Jo Y.K., Hwang J.J., Lee Y.M., Roh S.A., Kim J.C. Caspase-mediated cleavage of ATG6/Beclin-1 links apoptosis to autophagy in HeLa cells. Cancer Lett. 2009; 274 (1): 95–100. DOI: 10.1016/j.canlet.2008.09.004. PMID: 18842334.
29. Pagliarini V., Wirawan E., Romagnoli A., Ciccosanti F., Lisi G., Lippens S., Cecconi F., et al. Proteolysis of Ambra1 during apoptosis has a role in the inhibition of the autophagic pro-survival response. Cell Death Differ. 2012; 19 (9): 1495–1504. DOI: 10.1038/cdd.2012.27. PMID: 22441670.
Review
For citations:
Klyuchnikova E.I., Korpacheva O.V., Mozgovoy S.I., Zolotov A.N., Kononov A.V. Influence of Stress Resistance on Myocardial Expression of the Pro-Autophagic Protein Beclin-1 After Cardiac Contusion in Experimental Setting. General Reanimatology. 2023;19(6):54-61. https://doi.org/10.15360/1813-9779-2023-6-54-61