Preview

General Reanimatology

Advanced search

Nitric Oxide as a Nephroprotective Agent in Cardiac Surgery

https://doi.org/10.15360/1813-9779-2025-2-2523

Abstract

Aim. To evaluate the efficacy of perioperative nitric oxide (NO) administration in reducing the incidence of acute kidney injury (AKI) during hemiarch surgery for nonsyndromic ascending aortic aneurysms under cardiopulmonary bypass and hypothermic circulatory arrest (HCA).

Materials and Methods. A single-blind, prospective, randomized, controlled study included 80 patients older than 18 years who underwent hemiarch aortic surgery with HCA for nonsyndromic ascending aortic aneurysms between 2020 and 2023. Patients were randomized (1:1) into two groups: the NO group (who received perioperative NO at 80 ppm) and the control group (who received standard perioperative management without NO administration). The primary endpoint was the incidence of AKI according to KDIGO criteria. Secondary endpoints included biomarker levels of subclinical renal injury and clinical outcomes.

Results. Postoperatively, the incidence of AKI was 25% in the NO group compared to 50% in the control group (OR=0.26; 95% CI: 0.10–0.69; P=0.036). Patients in the NO group had significantly lower levels of urinary neutrophil gelatinase-associated lipocalin (uNGAL, P=0.03) and cystatin C (P<0.001) 4 hours after surgery. In addition, the length of stay in the intensive care unit (ICU) was significantly shorter in the NO group (P=0.03) compared to the control group.

Conclusion. Perioperative NO therapy at 80 ppm during hemiarch aortic surgery with HCA reduces the incidence of acute kidney injury, lowers the levels of kidney injury biomarkers (uNGAL and cystatin C), and shortens the ICU stay.

About the Authors

A. M. Boyko
Research Institute for Cardiology, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Alexander M. Boyko.

111-A Kievskaya Str., 634012 Tomsk



N. O. Kamenshchikov
Research Institute for Cardiology, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Nikolai O. Kamenshchikov.

111-A Kievskaya Str., 634012 Tomsk



Yu. K. Podoksenov
Research Institute for Cardiology, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Yuri K. Podoksenov.

111-A Kievskaya Str., 634012 Tomsk



M. L. Dyakova
Research Institute for Cardiology, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Maria L. Dyakova.

111-A Kievskaya Str., 634012 Tomsk



Yu. S. Svirko
Research Institute for Cardiology, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Yulia S. Svirko.

111-A Kievskaya Str., 634012 Tomsk



A. M. Gusakova
Research Institute for Cardiology, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Anna M. Gusakova.

111-A Kievskaya Str., 634012 Tomsk



E. B. Kim
Research Institute for Cardiology, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Elena B. Kim.

111-A Kievskaya Str., 634012 Tomsk



D. S. Panfilov
Research Institute for Cardiology, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Dmitry S. Panfilov.

111-A Kievskaya Str., 634012 Tomsk



B. N. Kozlov
Research Institute for Cardiology, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Boris N. Kozlov.

111-A Kievskaya Str., 634012 Tomsk



References

1. Clouse W. D., Hallett J. W. Jr, Schaff H. V., Gayari M. M., Ilstrup D. M., Melton L. J. 3rd. Improved prognosis of thoracic aortic aneurysms: a population-based study. JAMA. 1998; 280 (22): 1926–1929. DOI: 10.1001/jama.280.22.1926. PMID: 9851478.

2. Olsson C., Thelin S., Ståhle E., Ekbom A., Granath F. Thoracic aortic aneurysm and dissection: increasing prevalence and improved outcomes reported in a nationwide population-based study of more than 14,000 cases from 1987 to 2002. Circulation. 2006; 114 (24): 2611–2618. DOI: 10.1161/CIRCULATIONAHA.106.630400. PMID: 17145990.

3. Downey R. T., Aron R. A. Thoracic and thoracoabdominal aneurysms: etiology, epidemiology, and natural history. Anesthesiol Clin. 2022; 40 (4): 671–683. DOI: 10.1016/j.anclin.2022.08.011. PMID: 36328622.

4. Ortega-Loubon C., Tamayo E., Jorge-Monjas P. Cardiac surgery-associated acute kidney injury: current updates and perspectives. J Clin Med. 2022; 11 (11): 3054. DOI: 10.3390/jcm11113054. PMID: 35683442.

5. Isselbacher E. M. Thoracic and abdominal aortic aneurysms. Circulation. 2005; 111 (6): 816–828. DOI: 10.1161/01.CIR.0000154569.08857.7A. PMID: 15710776.

6. Zhou Z., Cecchi A. C., Prakash S. K., Milewicz D. M. Risk factors for thoracic aortic dissection. Genes (Basel). 2022; 13 (10): 1814. DOI: 10.3390/genes13101814. PMID: 36292699.

7. Kozlov B. N., Panfilov D. S., Bazarbekova B. A., Sonduev E. L., Boyko A. M. The immediate results of surgical treatment of an ascending aortic aneurysm in conjuction with a stenotic lesion of the aortic valve. Siberian Journal of Clinical and Experimental Medicine = Sibirskiy Zhurnal Eksperimentalnoy i Klinicheskoy Meditsiny. 2023; 38 (3): 135–142. (in Rus.). DOI: 10.29001/2073-8552-2022-424.

8. Gambardella I., Gaudino M., Lau C., Munjal M., Di Franco A., Ohmes L. B., Hameedi F., et al. Contemporary results of hemiarch replacement. Eur J Cardiothorac Surg. 2017; 52 (2): 333–338. DOI: 10.1093/ejcts/ezx071. PMID: 28387791.

9. Amano K., Takami Y., Ishikawa H., Ishida M., Tochii M., Akita K., Sakurai Y., et al. Lower body ischaemic time is a risk factor for acute kidney injury after surgery for type A acute aortic dissection. Interact Cardiovasc Thorac Surg. 2020; 30 (1): 107–112. DOI: 10.1093/icvts/ivz220. PMID: 31501854.

10. Wu H. B., Ma W. G., Zhao H. L., Zheng J., Li J. R., Liu O., Sun L. Z. Risk factors for continuous renal replacement therapy after surgical repair of type A aortic dissection. J Thorac Dis. 2017; 9 (4): 1126–1132. DOI: 10.21037/jtd.2017.03.128. PMID: 28523169.

11. Wang J., Yu W., Zhai G., Liu N., Sun L., Zhu J. Independent risk factors for postoperative AKI and the impact of the AKI on 30-day postoperative outcomes in patients with type A acute aortic dissection: an updated meta-analysis and meta-regression. J Thorac Dis. 2018; 10 (5): 2590–2598. DOI: 10.21037/jtd.2018.05.47. PMID: 29997920.

12. Ghincea C. V., Reece T. B., Eldeiry M., Roda G. F., Bronsert M. R., Jarrett M. J., Pal J. D., et al. Predictors of acute kidney injury following aortic arch surgery. J Surg Res. 2019; 242: 40–46. DOI: 10.1016/j.jss.2019.03.055. PMID: 31063910.

13. Arnaoutakis G. J., Vallabhajosyula P., Bavaria J. E., Sultan I., Siki M., Naidu S., Milewski R. K., et al. The impact of deep versus moderate hypothermia on postoperative kidney function after elective aortic hemiarch repair. Ann Thorac Surg. 2016; 102 (4): 1313–1321. DOI: 10.1016/j.athoracsur.2016.04.007. PMID: 27318775.

14. Kamenshchikov N. O., Duong N., Berra L. Nitric oxide in cardiac surgery: a review article. Biomedicines. 2023; 11 (4): 1085. DOI: 10.3390/biomedicines11041085. PMID: 37189703.

15. Kamenshchikov N. O., Anfinogenova Y. J., Kozlov B. N., Svirko Y. S., Pekarskiy S. E., Evtushenko V. V., Lugovsky V. A., et al. Nitric oxide delivery during cardiopulmonary bypass reduces acute kidney injury: a randomized trial. J Thorac Cardiovasc Surg. 2022; 163 (4): 1393–1403.e9. DOI: 10.1016/j.jtcvs.2020.03.182. PMID: 32718702.

16. Kellum J. A., Lameire N. KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care. 2013; 17 (1): 204. DOI: 10.1186/cc11454. PMID: 23394211.

17. Collection of abstracts Congress of the Federation of anesthesiologists and reanimatologists, Forum of anesthesiologists and reanimatologists of Russia (FARR-2024), SPb: 2024: 25. https://cdn.congressfar.ru/140/material.pdf. (in Russ.).

18. Arellano D. L. Acute kidney injury following cardiothoracic surgery. Crit Care Nurs Clin North Am. 2019; 31 (3): 407–417. DOI: 10.1016/j.cnc.2019.05.008. PMID: 31351558.

19. Wang J., Cong X., Miao M., Yang Y., Zhang J. Inhaled nitric oxide and acute kidney injury risk: a meta-analysis of randomized controlled trials. Ren Fail. 2021; 43 (1): 281–290. DOI: 10.1080/0886022X.2021.1873805. PMID: 33494652.

20. Minneci P. C., Deans K. J., Zhi H., Yuen P. S., Star R. A., Banks S. M., Schechter A. N., et al. Hemolysis-associated endothelial dysfunction mediated by accelerated NO inactivation by decompartmentalized oxyhemoglobin. J Clin Invest. 2005; 115 (12): 3409–17. DOI: 10.1172/JCI25040. PMID: 16294219.

21. Troncy E., Francoeur M., Salazkin I., Yang F., Charbonneau M., Leclerc G., Vinay P., Blaise G. Extra-pulmonary effects of inhaled nitric oxide in swine with and without phenylephrine. Br J Anaesth. 1997; 79 (5): 631–640. DOI: 10.1093/bja/79.5.631. PMID: 9422904.

22. Ross J. T., Robles A. J., Mazer M. B., Studer A. C., Remy K. E., Callcut R. A. Cell-free hemoglobin in the pathophysiology of trauma: a scoping review. Crit Care Explor. 2024; 6 (2): e1052. DOI: 10.1097/CCE.0000000000001052. PMID: 38352942.

23. Kamenshchikov N. O., Diakova M. L., Podoksenov Y. K., Churilina E. A., Rebrova T. Y., Akhmedov S. D., Maslov L. N., et al. Potential mechanisms for organoprotective effects of exogenous nitric oxide in an experimental study. Biomedicines. 2024; 12 (4): 719. DOI: 10.3390/biomedicines12040719. PMID: 38672075.

24. Te M. A., Kamenshchikov N. O., Podoksenov Yu. K., Mukhomedzyanov A. V., Maslov L. N., Kozlov B. N. The effect of nitric oxide donation on the severity of mitochondrial dysfunction to the renal tissue in cardiopulmonary bypass simulation: an experimental study. Ann Crit Care = Vestnik Intensivnoy Terapii im AI Saltanova. 2023; 4: 176–184. (in Russ.). DOI: 10.21320/1818-474X-2023-4-176-184.

25. Hu J., Spina S., Zadek F., Kamenshchikov N. O., Bittner E. A., Pedemonte J., Berra L. Effect of nitric oxide on postoperative acute kidney injury in patients who underwent cardiopulmonary bypass: a systematic review and meta-analysis with trial sequential analysis. Ann Intensive Care. 2019; 9 (1): 129. DOI: 10.1186/s13613-019-0605-9. PMID: 31754841.

26. Yan Y., Kamenshchikov N., Zheng Z., Lei C. Inhaled nitric oxide and postoperative outcomes in cardiac surgery with cardiopulmonary bypass: a systematic review and meta-analysis. Nitric Oxide. 2024; 146: 64–74. DOI: 10.1016/j.niox.2024.03.004. PMID: 38556145.

27. de Geus H. R., Ronco C., Haase M., Jacob L., Lewington A., Vincent J. L. The cardiac surgery-associated neutrophil gelatinase-associated lipocalin (CSA-NGAL) score: A potential tool to monitor acute tubular damage. J Thorac Cardiovasc Surg. 2016; 151 (6): 1476–1481. DOI: 10.1016/j.jtcvs.2016.01.037. PMID: 26952930.

28. Mostafa E. A., Shahin K. M., El Midany A. A. H., Hassaballa A. S., El-Sokkary I. N., Gamal M. A., Elsaid M. E., et al. Validation of cardiac surgery-associated neutrophil gelatinase-associated lipocalin score for prediction of cardiac surgery-associated acute kidney injury. Heart Lung Circ. 2022; 31 (2): 272–277. DOI: 10.1016/j.hlc.2021.05.084. PMID: 34219024.

29. Haase M., Bellomo R., Devarajan P., Schlattmann P., Haase-Fielitz A.; NGAL Meta-analysis Investigator Group. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2009; 54 (6): 1012–1024. DOI: 10.1053/j.ajkd.2009.07.020. PMID: 19850388.

30. Zhou F., Luo Q., Wang L., Han L. Diagnostic value of neutrophil gelatinase-associated lipocalin for early diagnosis of cardiac surgery-associated acute kidney injury: a meta-analysis. Eur J Cardiothorac Surg. 2016; 49 (3): 746–755. DOI: 10.1093/ejcts/ezv199. PMID: 26094017.

31. Dymova O. V., Eremenko A. A., Minbolatova N. M. The value of neutrophilic gelatinase-associated lipocalin (UNGAL) in the early diagnosis and prognosis of acute renal injury, MOSF and outcomes in cardiosurgical patients. Russ J Anesthesiol Reanimatol = Anesteziologiya i Reanimatologiya. 2017; 62 (5): 347–351. (in Russ.). DOI: 10.18821/0201-7563-2017-62-5-347-351.

32. Wen Y., Parikh C. R. Current concepts and advances in biomarkers of acute kidney injury. Crit Rev Clin Lab Sci. 2021; 58 (5): 354–368. DOI: 10.1080/10408363.2021.1879000. PMID: 33556265.

33. Schrezenmeier E. V., Barasch J., Budde K., Westhoff T., Schmidt-Ott K. M. Biomarkers in acute kidney injury — pathophysiological basis and clinical performance. Acta Physiol (Oxf). 2017; 219 (3): 554–572. DOI: 10.1111/apha.12764. PMID: 27474473.

34. Pode Shakked N., de Oliveira M. H. S., Cheruiyot I., Benoit J. L., Plebani M., Lippi G., Benoit S. W., et al. Early prediction of COVID-19-associated acute kidney injury: are serum NGAL and serum Cystatin C levels better than serum creatinine? Clin Biochem. 2022; 102: 1–8. DOI: 10.1016/j.clinbiochem.2022.01.006. PMID: 35093314.

35. Lan H., Liu X., Yang D., Zhang D., Wang L., Hu L. Comparing diagnostic accuracy of biomarkers for acute kidney injury after major surgery: a PRISMA systematic review and net-work meta-analysis. Medicine (Baltimore). 2023; 102 (40): e35284. DOI: 10.1097/MD.0000000000035284. PMID: 37800811.


Supplementary files

Review

For citations:


Boyko A.M., Kamenshchikov N.O., Podoksenov Yu.K., Dyakova M.L., Svirko Yu.S., Gusakova A.M., Kim E.B., Panfilov D.S., Kozlov B.N. Nitric Oxide as a Nephroprotective Agent in Cardiac Surgery. General Reanimatology. 2025;21(2):34-41. https://doi.org/10.15360/1813-9779-2025-2-2523

Views: 1364


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)