Neuroprotective Properties of Inhaled Argon-Oxygen Mixture after Photochemically Induced Ischemic Stroke
https://doi.org/10.15360/1813-9779-2025-5-2525
Abstract
The aim of this study was to investigate the effects of three 60-minute inhalations of an argon-oxygen gas mixture (Ar 70%/O₂ 30%) on the severity of neurological deficits, brain lesion volume, inflammatory and cellular responses, and cytokine levels in rats after photochemically induced ischemic stroke.
Materials and Methods. The experiment was performed in 21 male Wistar rats (250–300 g) randomly assigned to three groups: (1) ischemia + N₂ 70%/O₂ 30% inhalation (ischemia group, N=10); (2) ischemia + Ar 70%/O₂ 30% inhalation (ischemia + iAr group, N=8); and (3) sham-operated animals (sham group, N=3). Neurological status was assessed over 14 days using the limb placement test. On day 14 post-ischemia, animals underwent magnetic resonance imaging (MRI), histological and immunohistochemical analyses, and RT-PCR using RNA extracted from the liquid homogenate of the entire brain to evaluate the relative levels of IL-1β, IL-6, and TNF mRNAs.
Results. Significant differences in limb placement test scores were observed between ischemia and ischemia + iAr groups on day 3 (7.3 [5.3; 10.4] vs. 9.9 [10.2; 13.2], P=0.045) and day 7 (8.0 [7.3; 9.2] vs. 10.0 [9.0; 11.5], P=0.027). MRI showed a significantly smaller ischemia volume in the ischemia + iAr group compared to the ischemia group (12.5 [8.5; 17.4] mm³ vs. 21.0 [17.5; 22.68] mm³, P=0.01). Pro-inflammatory cytokine levels were significantly lower following argon-oxygen inhalation: IL-1β — 205 [175.5; 247.5] in the Ischemia + iAr group vs. 328.5 [299; 347.5] in the Ischemia group (P=0.001); TNF — 110.5 [93.5; 113] vs. 149.5 [126.5; 176.5], respectively (P=0.001).
Conclusion. Repeated 60 min inhalation of argon-oxygen mixture (Ar 70%/O₂ 30%) after photochemically induced ischemic stroke significantly reduces neurological impairment, modulates pro-inflammatory cytokine levels, and affects inflammatory and cellular responses.
About the Authors
Ekaterina A. BoevaRussian Federation
25 Petrovka Str., Bldg. 2, 107031 Moscow
Maxim V. Sutormin
Russian Federation
61/2 Shchepkin Str., 129110 Moscow
Artem N. Kuzovlev
Russian Federation
25 Petrovka Str., Bldg. 2, 107031 Moscow
Maxim A. Lyubomudrov
Russian Federation
25 Petrovka Str., Bldg. 2, 107031 Moscow
Victor V. Moroz
Russian Federation
25 Petrovka Str., Bldg. 2, 107031 Moscow
Natalia I. Usoltseva
Russian Federation
25 Petrovka Str., Bldg. 2, 107031 Moscow
Oleg A. Grebenchikov
Russian Federation
25 Petrovka Str., Bldg. 2, 107031 Moscow
References
1. Ostrova I. V., Babkina A. S., Lyubomudrov M. A., Grechko A. V., Golubev A. M. Photochemically induced thrombosis as a model of ischemic stroke (review). General Reanimatology = Obshchaya Reanimatologiya. 2023; 19 (3): 54–65. (in Russ.&Eng.). DOI: 10.15360/1813-9779-2023-3-54-65.
2. Cipriani R., Domerq M., Martín A., Matute C. Role of microglia in stroke. Adv Neurobiol. 2024; 37: 405–422. DOI: 10.1007/978-3-031-55529-9_23. PMID: 39207705.
3. Bitar L., Puig B., Oertner T. G., Dénes Á., Magnus T. Changes in neuroimmunological synapses during cerebral ischemia. Transl Stroke Res. 2024. DOI: 10.1007/s12975-024-01286-1. PMID: 39103660.
4. Grinchevskaya L. R., Salikhova D. I., Silachev D. N., Goldshtein D. V. Neural and glial regulation of angiogenesis in CNS in ischemic stroke. Bull Exp Biol Med. 2024. DOI: 10.1007/s10517-024-06219-4. PMID: 39266920.
5. Hakon J., Quattromani M. J., Sjölund C., Talhada D., Kim B., Moyanova S., Mastroiacovo F., et al. Inhibiting metabotropic glutamate receptor 5 after stroke restores brain function and connectivity. Brain. 2024; 4; 147 (1): 186–200. DOI: 10.1093/brain/awad293. PMID: 37656990.
6. Takahashi S. Metabolic contribution and cerebral blood flow regulation by astrocytes in the neurovascular unit. Cells. 2022; 11 (5): 813. DOI: 10.3390/cells11050813. PMID: 35269435.
7. Pinto M. J., Ragozzino D., Bessis A., Audinat E. Microglial modulation of synaptic maturation, activity, and plasticity. Adv Neurobiol. 2024; 37: 209–219. DOI: 10.1007/978-3-031-55529-9_12. PMID: 39207694.
8. Guffart E., Prinz M. Evolution of microglia. Adv Neurobiol. 2024; 37: 39–51. DOI: 10.1007/978-3-031-55529-9_3. PMID: 39207685.
9. Knezic A., Budusan E., Saez N. J., Broughton B. R.S., Rash L. D., King G. F., Widdop R. E., et al. Hi1a improves sensorimotor deficit following endothelin-1-induced stroke in rats but does not improve functional outcomes following filament-induced stroke in mice. ACS Pharmacol Transl Sci. 2024; 7 (4): 1043–1054. DOI: 10.1021/acsptsci.3c00328. PMID: 38638162.
10. Jia J., Yang L., Chen Y., Zheng L., Chen Y., Xu Y., Zhang M. The role of microglial phagocytosis in ischemic stroke. Front Immunol. 2022; 12: 790201. DOI: 10.3389/fimmu.2021.790201. PMID: 35082781.
11. Zhu H., Hu S., Li Y., Sun Y., Xiong X., Hu X., Chen J., et al. Interleukins and ischemic stroke. Front Immunol. 2022; 13: 828447. DOI: 10.3389/fimmu.2022.828447. PMID: 35173738.
12. Yuan S., Lin A., He Q.Q., Burgess S., Larsson S. C. Circulating interleukins in relation to coronary artery disease, atrial fibrillation and ischemic stroke and its subtypes: a two-sample Mendelian randomization study. Int J Cardiol. 2020; 313: 99–104. DOI: 10.1016/j.ijcard.2020.03.053. PMID: 32223966.
13. Kong X., Gong Z., Zhang L., Sun X., Ou Z., Xu B., Huang J., et al. JAK2/STAT3 signaling mediates IL-6-inhibited neurogenesis of neural stem cells through DNA demethylation/methylation. Brain Behav Immun. 2019; 79: 159–173. DOI: 10.1016/j.bbi.2019.01.027.
14. Jurcau A., Ardelean A. I. Oxidative stress in ischemia/reperfusion injuries following acute ischemic stroke. Biomedicines. 2022; 10 (3): 574. DOI: 10.3390/biomedicines10030574. PMID: 35327376.
15. Zhu H., Jian Z., Zhong Y., Ye Y., Zhang Y., Hu X., Pu B., et al. Janus kinase inhibition ameliorates ischemic stroke injury and neuroinflammation through reducing NLRP3 inflammasome activation via JAK2/STAT3 pathway inhibition. Front Immunol. 2021; 12: 714943. DOI: 10.3389/fimmu.2021.714943. PMID: 34367186.
16. Boeva E. A., Grebenchikov O. A. Organoprotective properties of argon (review). General Reanimatology = Obshchaya Reanimatologiya. 2022; 18 (5): 44–59. (in Russ.&Eng.). DOI: 10.15360/1813-9779-2022-5-44-59.
17. Boeva E. A., Silachev D. N., Yakupova E. I., Milovanova M. A., Varnakova L. A., Kalabushev S. N., Denisov S. O. et al. Experimental study of neuroprotective properties of inhaled argon-oxygen mixture in a photoinduced ischemic stroke model. General Reanimatology = Obshchaya Reanimatologiya. 2023; 19 (3): 46–53. (in Russ.&Eng.). DOI: 10.15360/1813-9779-2023-3-46-53.
18. Bocharnikov A. D., Boeva E. A., Milovanova M. A., Antonova V. V., Yakupova E. I., Grechko A. V. Neuroprotection by anesthetics in brain injury models. General Reanimatology = Obshchaya Reanimatologiya. 2024; 20 (2): 65–69. (in Russ.&Eng). DOI: 10.15360/1813-9779-2024-2-65-69.
19. Silachev D. N., Uchevatkin A. A., Pirogov Y. A., Zorov D. B., Isaev N. K. Comparative evaluation of two methods for studies of experimental focal ischemia: magnetic resonance tomography and triphenyltetrazoleum detection of brain injuries. Bull Exp Biol Med. 2009; 147 (2); 269–272. DOI: 10.1007/s10517-009-0489-z.
20. De Ryck M., Van Reempts J., Borgers M., Wauquier A., Janssen P. A. Photochemical stroke model: flunarizine prevents sensorimotor deficits after neocortical infarcts in rats. Stroke. 1989; 20 (10); 1383-1390. DOI: 10.1161/01.str.20.10.1383.
21. Jolkkonen J., Puurunen K., Rantakömi S., Härkönen A., Haapalinna A., Sivenius J. Behavioral effects of the alpha (2)-adrenoceptor antagonist, atipamezole, after focal cerebral ischemia in rats. Eur J Pharmacol. 2000; 400 (2–3); 211–219. DOI: 10.1016/s0014-2999 (00)00409-x.
22. Anderson M. B., Das S., Miller K. E. Subcellular localization of neuronal nuclei (NeuN) antigen in size and calcitonin gene-related peptide (CGRP) populations of dorsal root ganglion (DRG) neurons during acute peripheral inflammation. Neurosci Lett. 2021; 760: 135974. DOI: 10.1016/j.neulet.2021.135974.
23. Zhu X., Yi Z., Li R., Wang C., Zhu W., Ma M., Lu J., Li P. Constructing a transient ischemia attack model utilizing flexible spatial targeting photothrombosis with real-time blood flow imaging feedback. Int J Mol Sci. 2024; 25 (14): 7557. DOI: 10.3390/ijms25147557. PMID: 39062800.
24. Villa-González M., Rubio M., Martín-López G., Mallavibarrena P. R., Vallés-Saiz L., Vivien D., Wandosell F., et al. Pharmacological inhibition of mTORC1 reduces neural death and damage volume after MCAO by modulating microglial reactivity. Biol Direct. 2024; 19 (1): 26. DOI: 10.1186/s13062-024-00470-5. PMID: 38582839.
25. Koukalova L., Chmelova M., Amlerova Z., Vargova L. Out of the core: the impact of focal ischemia in regions beyond the penumbra. Front Cell Neurosci. 2024; 18: 1336886. DOI: 10.3389/fncel.2024.1336886. PMID: 38504666.
26. Chiang P. T., Tsai H. H., Yen R. F., Tsai Y. C., Wu C.H., Chiu C. H., Tsai L. K. In vivo detection of poststroke cerebral cell proliferation in rodents and humans. Ann Clin Transl Neurol. 2024; 11 (2): 497–507. DOI: 10.1002/acn3.51972.
27. Chen W., Zhang Y., Yin M., Cheng Z., Li D., Luo X., Liu X., et al. Circular R. N.A circPRDX3 mediates neuronal survival apoptosis in ischemic stroke by targeting miR-641 and NPR3. Brain Res. 2022; 1797: 148114. DOI: 10.1016/j.brainres.2022.148114.
28. Kanemura Y., Yamamoto A., Katsuma A., Fukusumi H., Shofuda T., Kanematsu D., Handa Y., et al. Human-induced pluripotent stem cell-derived neural progenitor cells showed neuronal differentiation, neurite extension, and formation of synaptic structures in rodent ischemic stroke brains. Cells. 2024; 13 (8): 671. DOI: 10.3390/cells13080671. PMID: 38667286.
29. Boyle B. R., Berghella A. P., Blanco-Suarez E. Astrocyte regulation of neuronal function and survival in stroke pathophysiology. Adv Neurobiol. 2024; 39: 233–267. DOI: 10.1007/978-3-031-64839-7_10. PMID: 39190078.
30. Krenzlin H., Wesp D. M.A., Korinek A. A.E., Ubbens H., Volland J., Masomi-Bornwasser J., Weber K. J., et al. Effects of argon in the acute phase of subarachnoid hemorrhage in an endovascular perforation model in rats. Neurocrit Care. 2024. DOI: 10.1007/s12028-024-02090-3. PMID: 39174846.
31. Moulson A. J., Squair J. W., Franklin R. J.M., Tetzlaff W., Assinck P. Diversity of reactive astrogliosis in CNS pathology: heterogeneity or plasticity? Front Cell Neurosci. 2021; 15: 703810. DOI: 10.3389/fncel.2021.703810. PMID: 34381334.
32. Takamatsu H., Tatsumi M., Nitta S., Ichise R., Muramatsu K.,. Iida M., Nishimura S., et al. Time courses of progress to the chronic stage of middle cerebral artery occlusion models in rats. Exp Brain Res. 2002; 146 (1): 95–102. DOI: 10.1007/s00221-002-1147-0. PMID: 12192583.
33. Qin C., Zhou L. Q., Ma X.T., Hu Z.W., Yang S., Chen M., Bosco D. B., et al. Dual functions of microglia in ischemic stroke. Neurosci Bull. 2019; 35 (5): 921–933. DOI: 10.1007/s12264-019-00388-3.
34. Silkin V. V., Yershov V. I., Burdakov V. V., Biryukova T. V., Bredikhin A.Yu., Lozinskaya T.Yu. Mathematical modeling of severe ischemic stroke with multiple organ failure: a retrospective observational study. Ann Crit Care = Vestnik Intensivnoy Terapii im A. I. Saltanova. 2023; (1): 91–100. (in Russ.). DOI: 10.21320/1818-474X-2023-1-91-100.
35. Avidzba A. R., Saskin V. A., Kirov M. Y. Hemodynamics and reperfusion in ischemic stroke: friends or foes? Russ J Anesthesiol.Reanimatol = Anesteziologiya i Reanimatologiya. 2024; (2): 91–96. DOI: 10.17116/anaesthesiology202402191.
Review
For citations:
Boeva E.A., Sutormin M.V., Kuzovlev A.N., Lyubomudrov M.A., Moroz V.V., Usoltseva N.I., Grebenchikov O.A. Neuroprotective Properties of Inhaled Argon-Oxygen Mixture after Photochemically Induced Ischemic Stroke. General Reanimatology. (In Russ.) https://doi.org/10.15360/1813-9779-2025-5-2525