Preview

General Reanimatology

Advanced search

The Effect of Fluid Therapy on the Development of Metabolic Disturbances and ICU Length of Stay in Pediatric Patients Undergoing Surgery for Congenital Heart Defects

https://doi.org/10.15360/1813-9779-2025-3-2555

Abstract

Aim: to compare the effects of restrictive versus liberal fluid therapy on the duration of mechanical ventilation (MV), total intensive care unit (ICU) stay, and the need for inotropic and vasopressor support during the post-perfusion period and the first 24 hours after surgery in young children undergoing surgical correction of congenital heart defects (CHD).

Materials and Methods. A prospective, randomized, single-center study included pediatric patients (toddlers) with CHD who were assigned to one of two groups. Group 1 received fluid therapy according to a restrictive protocol (RP group, N=65) at 8 mL/kg/h, while group 2 received therapy according to a liberal protocol (LP group, N=67) at 16 mL/kg/h. The study evaluated the dynamics of metabolic disturbances, duration of ventilatory support, postoperative weight gain, and total ICU stay.

Results. Mechanical ventilation time and total ICU stay were longer in the RP group compared to the LP group: 14±5 hours vs. 10±3 hours (P=0.035) and 27±4 hours vs. 23±2 hours (P=0.036), respectively. Mean postoperative weight gain in the LP group was 2.00% vs 0.32% in the RP group (P=0.001). No clinically significant metabolic or electrolyte disturbances were observed in either group, except for elevated K ion levels in the LP group.

Conclusion. These findings contradict previously reported data in adult population with CHD. In toddlers, a liberal approach to fluid therapy resulted in shorter duration of ventilation and ICU stay compared to a restrictive approach. Toddlers are more sensitive to fluid volume and their preload requirements are higher than those of adults.

About the Authors

N. A. Solovyov
A. N. Bakulev National Medical Research Center for Cardiovascular Surgery, Russian Ministry of Health; G. N. Speransky Children's City Clinical Hospital No. 9, Moscow Health Department
Russian Federation

Nikolay A. Solovyov

135 Rublevskoe shosse, 121552 Moscow

29 Shmitovsky pr., 123317 Moscow



M. M. Rybka
A. N. Bakulev National Medical Research Center for Cardiovascular Surgery, Russian Ministry of Health
Russian Federation

Mikhail M. Rybka

135 Rublevskoe shosse, 121552 Moscow



D. A. Dibin
A. N. Bakulev National Medical Research Center for Cardiovascular Surgery, Russian Ministry of Health
Russian Federation

Denis A. Dibin

135 Rublevskoe shosse, 121552 Moscow



G. E. Gorbunov
A. N. Bakulev National Medical Research Center for Cardiovascular Surgery, Russian Ministry of Health
Russian Federation

Gleb E. Gorbunov

135 Rublevskoe shosse, 121552 Moscow



S. M. Tsoi
A. N. Bakulev National Medical Research Center for Cardiovascular Surgery, Russian Ministry of Health
Russian Federation

Sofya M. Tsoi

135 Rublevskoe shosse, 121552 Moscow



Z. A. Kodzokova
A. N. Bakulev National Medical Research Center for Cardiovascular Surgery, Russian Ministry of Health
Russian Federation

Zera A. Kodzokova

135 Rublevskoe shosse, 121552 Moscow



A. A. Goncharov
A. N. Bakulev National Medical Research Center for Cardiovascular Surgery, Russian Ministry of Health
Russian Federation

Andrey A. Goncharov

135 Rublevskoe shosse, 121552 Moscow



References

1. Mathew A., Rai E. Pediatric perioperative fluid management. Saudi J Anaesth. 2021; 15 (4): 435–440. DOI: 10.4103/sja.sja_140_21. PMID: 34658733.

2. Myles P. S., McIlroy D.R., Bellomo R., Wallace S. Importance of intraoperative oliguria during major abdominal surgery: findings of the Restrictive versus Liberal Fluid Therapy in Major Abdominal Surgery trial. Br J Anaesth. 2019; 122 (6): 726–733. DOI: 10.1016/j.bja.2019.01.010. PMID: 30916001.

3. Anker A. M., Ruewe M., Prantl L., Baringer M., Pawlik M. T., Zeman F., Goecze I., et al. Biomarker-guided acute kidney injury risk assessment under liberal versus restrictive fluid therapy — the prospectiverandomized MAYDAY-trial. Sci Rep. 2024; 14 (1): 17094. DOI: 10.1038/s41598-024-68079-2. PMID: 39048691.

4. Mathew P. J., Sharma S., Bhardwaj N., Ashok V., Malik M. A. Goaldirected fluid therapy guided by Plethysmographic Variability Index (PVI) versus conventional liberal fluid administration in children during elective abdominal surgery: a randomized controlled trial. J Pediatr Surg. 2023; 58 (4): 735–740. DOI: 10.1016/j.jpedsurg.2022.11.015. PMID: 36631313.

5. Feng J., Kant S., Sellke F. W. Microvascular dysfunction following cardioplegic arrest and cardiopulmonary bypass. Vessel Plus. 2021; 5: 30. DOI: 10.20517/2574-1209.2021.57.

6. Guarracino F., Habicher M., Treskatsch S., Sander M., Szekely A., Paternoster G., Salvi L., et al. Vasopressor therapy in cardiac surgeryan Experts› Consensus Statement. J Cardiothorac Vasc Anesth. 2021; 35 (4): 1018–1029. DOI: 10.1053/j.jvca.2020.11.032. PMID: 33334651.

7. Zieg J., Narla D., Gonsorcikova L., Raina R. Fluid management in children with volume depletion. Pediatr Nephrol. 2024; 39 (2): 423–434. DOI: 10.1007/s00467-023-06080-z. PMID: 37452205.

8. Starostin D. O., Kuzovlev A. N. Role of ultrasound in diagnosing volume status in critically ill patients. Ann Crit Care = Vestnik Intensivnoy Terapii im A. I. Saltanova. 2018; 4: 42–50. (In Russ.). DOI: 10.21320/1818-474X-2018-4-42-50.

9. Lobdell K. W., Chatterjee S., Sander M. Goal-directed therapy for cardiac surgery. Crit Care Clin. 2020; 36 (4): 653–662. DOI: 10.1016/j.ccc.2020.06.004. PMID: 32892819.

10. Habicher M., Perrino A.Jr, Spies C. D., von Heymann C., Wittkowski U., Sander M. J. Contemporary fluid management in cardiac anesthesia. J Cardiothorac Vasc Anesth. 2011; 25 (6): 1141–1153. DOI: 10.1053/j.jvca.2010.07.020. PMID: 20947379.

11. Kodzokova Z. A., Lomakin M. V., Rybka M. M., Dibin D. A. Intraoperative central hemodynamics measurement by thermodilution technique using a Swan–Ganz catheter in a patient with corrected transposition of the great arteries. Clinical Physiology of Blood Circulation = Klinicheskaya Fiziologiya Krovoobrashcheniya. 2020; 17 (2). 142–147. (In Russ.). DOI: 10.24022/1814-6910-2020-17-2-142-147.

12. Langer T., D’Oria V., Spolidoro G. C. I., Chidini G., Catenacci S., Marchesi T., Guerrini M., et al. Fluid therapy in mechanically ventilated critically ill children: the sodium, chloride and water burden of fluid creep. BMC Pediatr. 2020; 20 (1): 424. DOI: 10.1186/s12887-020-02322-3. PMID: 32891127.

13. Sulaimanova Z. D., Lazarev V. V. Crystalloid agents used in perioperative infusion therapy in children. Russian Bulletin of Pediatric Surgery, Anesthesia and Intensive Care = Rossiyskiy Vestnik Detskoy Khirurgii Anesteziologii i Reanimatologii. 2019; 4: 99–107. (In Russ.). DOI: 10.30946/2219-4061-2019-9-4-99-107.

14. Ushkalova E. A., Zyryanov S. K., Zatolochina K. E., Butranova O. I. Infusion fluids: a clinical pharmacologist’s view. Russian Journal of Anaesthesiology and Reanimatology = Anesteziologiya i Reanimatologiya. 2021; (6): 100—106. (In Russ.) DOI: 10.17116/anaesthesiology2021061100.

15. Belousova E. I., Matinyan N. V., Martynov L. A. Strategy of infusiontransfusion therapy in operations with massive bloodwork in children with tumor abomalomal localization tumors. Russian Bulletin of Pediatric Surgery, Anesthesia and Intensive Care = Rossiyskiy Vestnik Detskoy Khirurgii Anesteziologii i Reanimatologii. 2018; 8 (2): 56–64. (In Russ.). DOI: 10.30946/2219-4061-2018-8-2-56-64.

16. Khinchagov D. Ya., Rybka M. M., Mumladze K. V., Golubev E. P., Yudin G. V., Aidashev Yu. Y., Vorozhka I. V. Choosing an infusion therapy strategy for coronary artery bypass surgery without artificial circulation. Clinical Physiology of Blood Circulation = Klinicheskaya Fiziologiya Krovoobrashcheniya. 2022; 19 (4): 338–48. (In Russ.). DOI: 10.24022/1814-6910-2022-19-4-338-348.

17. Sümpelmann R., Zander R., Witt L. Perioperative Infusionstherapie bei Kindern. Anasthesiol Intensivmed Notfallmed Schmerzther. 2020; 55 (5): 324–333. DOI: 10.1055/a-1068-8566. PMID: 32434263.

18. Brandewie K. L., Selewski D. T., Bailly D. K., Bhat P. N., Diddle J. W., Ghbeis M., Krawczeski C. D., et al; NEPHRON investigators. Early postoperative weight-based fluid overload is associated with worse outcomes after neonatal cardiac surgery. Pediatr Nephrol. 2023; 38 (9): 3129–3137. DOI: 10.1007/s00467-023-05929-7. PMID: 36973562.

19. Hudkins M. R., Miller-Smith L., Evers P. D., Muralidaran A., Orwoll B. E. Nonresuscitation fluid accumulation and outcomes after pediatric cardiac surgery: single-center retrospective cohort study. Pediatr Crit Care Med. 2023; 24 (12): 1043–1052. DOI: 10.1097/PCC.0000000000003373. PMID: 37747301.

20. Bellos I., Iliopoulos D. C., Perrea D. N. Association of postoperative fluid overload with adverse outcomes after congenital heart surgery: a systematic review and dose-response meta-analysis. Pediatr Nephrol. 2020; 35 (6): 1109–1119. DOI: 10.1007/s00467-020-04489-4. PMID: 32040627.

21. Delpachitra M. R., Namachivayam S. P., Millar J., Delzoppo C., Butt W. W. A case-control analysis of postoperative fluid balance and mortality after pediatric cardiac surgery. Pediatr Crit Care Med. 2017; 18 (7): 614–622. DOI: 10.1097/PCC.0000000000001170. PMID: 28492405.

22. Bailly D. K., Alten J. A., Gist K. M., Mah K. E., Kwiatkowski D. M., Valentine K. M., Diddle J. W., et al; NEPHRON Investigators. Fluid accumulation after neonatal congenital cardiac operation: clinical implications and outcomes. Ann Thorac Surg. 2022; 114 (6): 2288–2294. DOI: 10.1016/j.athoracsur.2021.12.078. PMID: 35245511.

23. Neumayr T. M., Alten J. A., Bailly D. K., Bhat P. N., Brandewie K. L., Diddle J. W., Ghbeis M., et al; NEPHRON Investigators. Assessment of fluid balance after neonatal cardiac surgery: a description of intake/output vs. weight-based methods. Pediatr Nephrol. 2023; 38 (4): 1355–1364. DOI: 10.1007/s00467-022-05697-w. PMID: 36066771.

24. Brossier D. W., Tume L. N., Briant A. R., Chaparro C. J., Moullet C., Rooze S., Verbruggen S. C. A. T., et al; Metabolism Endocrinology and Nutrition section of the European Society of Pediatric and Neonatal Intensive Care (ESPNIC). ESPNIC clinical practice guidelines: intravenous maintenance fluid therapy in acute and critically ill children- a systematic review and meta-analysis. Intensive Care Med. 2022; 48 (12): 1691–1708. DOI: 10.1007/s00134-022-06882-z. PMID: 36289081.


Supplementary files

Review

For citations:


Solovyov N.A., Rybka M.M., Dibin D.A., Gorbunov G.E., Tsoi S.M., Kodzokova Z.A., Goncharov A.A. The Effect of Fluid Therapy on the Development of Metabolic Disturbances and ICU Length of Stay in Pediatric Patients Undergoing Surgery for Congenital Heart Defects. General Reanimatology. 2025;21(3):4-10. (In Russ.) https://doi.org/10.15360/1813-9779-2025-3-2555

Views: 360


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)