Preview

General Reanimatology

Advanced search

Neuroprotective Effect of Pharmacological Preconditioning with Dicholine Succinate in Experimental Ischemic Stroke in Rats

https://doi.org/10.15360/1813-9779-2025-5-2570

Abstract

Ischemic stroke is currently considered as one of the most pressing public health issues. Despite the differences in underlying mechanisms of ischemic and ischemic-reperfusion damage to the nervous tissue, the ultimate percentage of disability depends on intervention effects on the penumbra zone. The use of dicholine succinate (DCS), a neuronal insulin-sensitizer, is a promising pharmacological agent for management and prevention of stroke consequences.

The aim of the study was to investigate the effect of pharmacological preconditioning with DCS on brain cell death in experimental ischemic stroke in rats.

Materials and methods. Ischemic stroke in rats (N=16) was modeled by injecting the vasoconstrictor endothelin-1 (ET-1) into the striatum. The effect of pharmacological preconditioning with DCS as the active substance was evaluated by measuring the area of brain infarction in brain sections stained with cresyl violet. The effect of DCS on glycolysis and oxidative phosphorylation in primary cultures of rat cerebellum cells was assessed by measuring the rate of extracellular acidification and the rate of oxygen uptake, respectively.

Results. DCS administration in the preconditioning mode for 7 days, once a day orally, at a dose of 50 mg/kg, reduces the maximum area of the brain infarction zone by 34% (P<0.05) compared to the control in the subsequent experimental ischemic stroke induced by ET-1 administration. Three-day incubation of rat cerebellum primary culture with 50 µM DCHS does not affect the basal levels of glycolysis (P=0.916) and cellular respiration (P=0.8346), but increases cellular glycolytic reserve by 70.0% (P<0.0001) compared to the control.

Conclusion. For the first time, the neuroprotective effect of pharmacological preconditioning with the neuronal insulin-sensitizer DCS in ischemic stroke has been shown. Mechanism of DCS action associates with an increase in the glycolytic reserve of brain cells, i.e., with increased ability of preconditioned cells to produce ATP and lactate via glycolysis in case of acutely compromised oxidative phosphorylation.

About the Authors

Igor A. Pomytkin
Scientific Center for Biomedical Technologies, Federal Medical and Biological Agency
Russian Federation

Svetlye Gory village, bldg 1, 143442 Krasnogorsk District, Moscow Region



Marat A. Magomedov
N.I. Pirogov City Clinical Hospital № 1, Moscow City Health Department
Russian Federation

8 Leninsky Ave., 119049 Moscow



Anna G. Demchenko
Academician Bochkov Medical Genetics Research Center
Russian Federation

1 Moskvorechye Str., 115478 Moscow



Maxim V. Balyazin
Academician Bochkov Medical Genetics Research Center; Scientific and Educational Resource Center for Cellular Technologies, Patrice Lumumba Peoples Friendship University of Russia
Russian Federation

1 Moskvorechye Str., 115478 Moscow; 
6 Miklukho-Maсlaya Str., 117198 Moscow



Nikolay V. Shishkin
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

25 Petrovka Str., Bldg. 2, 107031 Moscow



Rostislav A. Cherpakov
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

25 Petrovka Str., Bldg. 2, 107031 Moscow



Vladimir N. Karkishchenko
Scientific Center for Biomedical Technologies, Federal Medical and Biological Agency
Russian Federation

Svetlye Gory village, bldg 1, 143442 Krasnogorsk District, Moscow Region



References

1. Feigin V. L., Brainin M., Norrving B., Martins S., Sacco R. L., Hacke W., Fisher M., et al. World Stroke Organization (WSO): global stroke fact sheet 2022. Int J Stroke. 2022; 17 (1): 18–29. DOI: 10.1177/17474930211065917. PMID: 34986727.

2. Gusev E. I., Skvortsova V. I. Cerebral ischemia. Moscow: Medicine; 2001. 328 p (in Russ.).

3. O’Collins V. E., Macleod M. R., Donnan G. A., Horky L. L., van der Worp B. H., Howells D. W. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006; 59 (3): 467–477. DOI: 10.1002/ana.20741. PMID: 16453316.

4. Lourbopoulos A., Mourouzis I., Xinaris C., Zerva N., Filippakis K., Pavlopoulos A., Pantos C. Translational block in stroke: a constructive and «out-of-the-box» reappraisal. Front Neurosci. 2021; 15: 652403. DOI: 10.3389/fnins.2021.652403. PMID: 34054413.

5. Murry C. E., Jennings R. B., Reimer K. A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986; 74 (5): 1124–1136. DOI: 10.1161/01.CIR.74.5.1124. PMID: 3769170.

6. Liu Y., Kato H., Nakata N., Kogure K. Protection of rat hippocampus against ischemic neuronal damage by pretreatment with sublethal ischemia. Brain Res. 1992; 586 (1): 121–124. DOI: 10.1016/0006-8993(92)91380-W. PMID: 1380876.

7. Li S., Hafeez A., Noorulla F., Geng X.,Shao G., Ren C., Lu G., et al. Preconditioning in neuroprotection: from hypoxia to ischemia. Prog Neurobiol. 2017; 157: 79–91. DOI: 10.1016/j.pneurobio.2017.01.001. PMID: 28110083.

8. Dengler V. L., Galbraith M., Espinosa J. M. Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol. 2014; 49 (1): 1–15. DOI: 10.3109/10409238.2013.838205. PMID: 24099156.

9. Dong P., Li Q., Han H. HIF-1α in cerebral ischemia (Review). Mol Med Rep. 2022; 25 (2): 41. DOI: 10.3892/mmr.2021.12557. PMID: 34878158.

10. Zelzer E., Levy Y., Kahana C., Shilo B. Z., Rubinstein M., Cohen B. Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1alpha/ARNT. EMBO J. 1998; 17 (17): 5085–5094. DOI: 10.1093/emboj/17.17.5085. PMID: 9724644.

11. Pilkis S. J., Granner D. K. Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu Rev Physiol. 1992; 54: 885–909. DOI: 10.1146/annurev.ph.54.030192.004321. PMID: 1562196.

12. Taha C., Mitsumoto Y., Liu Z., Skolnik E. Y., Klip A. The insulin-dependent biosynthesis of GLUT1 and GLUT3 glucose transporters in L6 muscle cells is mediated by distinct pathways. Roles of p21ras and pp7o S6 kinase. J Biol Chem. 1995; 270 (42): 24678–24681. DOI: 10.1074/jbc.270.42.24678. PMID: 7559581.

13. Masuda S., Chikuma M., Sasaki R. Insulin-like growth factors and insulin stimulate erythropoietin production in primary cultured astrocytes. Brain Res. 1997; 746 (1–2): 63–70. DOI: 10.1016/S0006-8993(96)01186-9. PMID: 9037485.

14. Miele C., Rochford J. J., Filippa N., Giorgetti-Peradi S., Van Obberghen E. Insulin and insulin-like growth factor-I induce vascular endothelial growth factor mRNA expression via different signaling pathways. J Biol Chem. 2000; 275 (28): 21695–21702. DOI: 10.1074/jbc.M000805200. PMID: 10777488.

15. Treins C., Giorgetti-Peraldi S., Murdaca J., Semenza G. L., Van Obberghen E. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J Biol Chem. 2002; 277 (31): 27975-27981. DOI: 10.1074/jbc.M204152200. PMID: 12032158.

16. Stiehl D. P., Jelkmann W., Wenger R. H., Hellwig-Bürgel T. Normoxic induction of the hypoxia-inducible factor 1alpha by insulin and interleukin-1beta involves the phosphatidylinositol 3-kinase pathway. FEBS Lett. 2002; 512 (1-3): 157–162. DOI: 10.1016/S0014-5793(02)02247-0. PMID: 11852072.

17. Russo V., Candeloro P., Malara N., Perozziello G., Iannone M., Scicchitano M., Mollace R., et al. Key role of cytochrome C for apoptosis detection using Raman microimaging in an animal model of brain ischemia with insulin treatment. Appl Spectrosc. 2019; 73 (10): 1208–1217. DOI: 10.1177/0003702819858671. PMID: 31219322.

18. Storozheva Z. I., Proshin A. T., Sherstnev V. V., Storozhevykh T., Senilova Y. E., Persyantseva N. A., Pinelis V. G., et al. Dicholine salt of succinic acid, a neuronal insulin sensitizer, ameliorates cognitive deficits in rodent models of normal aging, chronic cerebral hypoperfusion, and beta-amyloid peptide-(25-35)-induced amnesia. BMC Pharmacol. 2008; 8: 1. DOI: 10.1186/1471-2210-8-1. PMID: 18215309.

19. Pomytkin I. A., Semenova N. A. Study of the effect of preconditioning with succinic acid salt of choline (1:2) on the disturbances of energy metabolism in the brain during ischemia by 31P NMR in vivo. Dokl Biochem Biophys. 2005; 403: 289–292. DOI: 10.1007/s10628-005-0094-7. PMID: 16229144.

20. Pomytkin I. A., Storozheva Z. I., Semenova N. A., Proshin A. T., Sherstnev V. V., Varfolomeev S. D. Neuroprotective effect of choline succinate in rats with experimental chronic cerebral ischemia evaluated by cognitive ability tests. Biol Bull. 2007; 34 (2): 144–147.

21. Esposito E., Desai R., Ji X., Lo E. H. Pharmacologic pre- and post-conditioning for stroke: Basic mechanisms and translational opportunity. Brain Circ. 2015; 1: 104–113. DOI: 10.4103/2394-8108.166380.

22. Pomytkin I. A., Pisarev V. V., Merkulov M. E., Kuznetsova E. B., Salina E. A., Malygin A.Yu., Karkishchenko N. N. Phase II of clinical trial of Direkord: randomized, double-blind, placebo-controlled, parallel group, and prospective study to select optimal dosage and to study the efficacy, safety, and tolerability in ischemic stroke patients in the early recovery period. Biomedicine = Biomeditsina. 2023; 19 (3): 87–96. (in Russ.). DOI: 10.33647/2074-5982-19-3-87-96.

23. Pomytkin I. A., Pisarev V. V., Merkulov M. E., Lukinykh L. V., Morzhukhina M. V., Karkischenko N. N. Results of phase III clinical trial: a multicenter randomized, double-blind, placebo-controlled, parallel group study of the efficacy and safety of Direkord in ischemic stroke patients in early recovery period. Biomedicine = Biomeditsina. 2023; 19 (3): 87–96. (in Russ.). DOI: 10.33647/2074-5982-19-4-81-93.

24. Berthet C., Castillo X., Magistretti P. J., Hirt L. New evidence of neuroprotection by lactate after transient focal cerebral ischaemia: extended benefit after intracerebroventricular injection and efficacy of intravenous administration. Cerebrovasc Dis. 2012; 34 (5–6): 329–335. DOI: 10.1159/000343657. PMID: 23154656.

25. Jourdain P., Rothenfusser K., Ben-Adiba C., Allaman I., Marquet P., Magistretti P. J. Dual action of L-Lactate on the activity of NR2B-containing NMDA receptors: from potentiation to neuroprotection. Sci Rep. 2018; 8 (1): 13472. DOI: 10.1038/s41598-018-31534-y. PMID: 30194439.

26. Jourdain P., Allaman I., Rothenfusser K., Fiumelli H., Marquet P., Magistretti P. J. L-Lactate protects neurons against excitotoxicity: implication of an ATP-mediated signaling cascade. Sci Rep. 2016; 6: 21250. DOI: 10.1038/srep21250. PMID: 26893204.

27. Cerina M., Levers M., Keller J. M., Frega M. Neuroprotective role of lactate in a human in vitro model of the ischemic penumbra. Sci Rep. 2024; 14: 7973. DOI: 10.1038/s41598-024-58669-5. PMID: 38575687.

28. Sanderson T. H., Reynolds C. A., Kumar R., Przyklenk K., M. Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol. 2013; 47 (1): 9–23. DOI: 10.1007/s12035-012-8344-z. PMID: 23011809.


Supplementary files

Review

For citations:


Pomytkin I.A., Magomedov M.A., Demchenko A.G., Balyazin M.V., Shishkin N.V., Cherpakov R.A., Karkishchenko V.N. Neuroprotective Effect of Pharmacological Preconditioning with Dicholine Succinate in Experimental Ischemic Stroke in Rats. General Reanimatology. (In Russ.) https://doi.org/10.15360/1813-9779-2025-5-2570

Views: 31


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)