Preview

General Reanimatology

Advanced search

The Impact of Interleukin-6 and Hypoxia on the Expression of Brain Injury Marker Proteins in a Cellular Model of the Neurovascular Unit

https://doi.org/10.15360/1813-9779-2025-3-2540

Abstract

The high incidence of postoperative cognitive dysfunction in children undergoing cardiac surgery underscores the urgent need for effective neuroprotective strategies.

Aim. To examine the effects of hypoxia and interleukin-6 (IL-6) on the expression of claudin-5, occludin-1, and interleukin-1 (IL-1) and IL-6 receptors in neurovascular unit (NVU) cells.

Materials and methods. An in vitro NVU model comprising neurons, astrocytes, and endothelial cells was established. The cells were cultured under normoxic and hypoxic conditions with oxygen concentrations of 15%, 10%, 7%, and 5%. The cultures were also treated with patient-derived sera containing high or low levels of IL-6. All incubations were conducted under normothermic conditions for 30 minutes. Injury marker expression was then assessed using fluorescence analysis.

Results. Significant reductions in claudin-5 fluorescence intensity were observed at oxygen levels of 10% and below (15.2 vs. 34.3 in controls, P=0.0105). Hypoxia did not affect occludin-1 expression. IL-1 receptor fluorescence intensity increased under 7% and 5% oxygen conditions (12.2 and 12.9 versus 9.9 in the control group, P=0.0105), while IL-6 receptor expression remained unchanged. In both normoxic and hypoxic conditions, adding patient sera significantly altered marker expression; hypoxia enhanced these effects. Sera with the highest IL-6 levels induced the most pronounced reduction in injury marker fluorescence.

Conclusion. IL-6 had a more significant impact on injury marker expression in NVU cells than hypoxia did. Hypoxic conditions with oxygen concentrations down to 10% did not affect marker expression

About the Authors

A. A. Ivkin
Research Institute of Complex Problems of Cardiovascular Disease, Ministry of Education and Science of the Russian Federation
Russian Federation

Artem A. Ivkin

6 Academician L. S. Barbarash Boulevard, 650002 Kemerovo



E. V. Grigoriev
Research Institute of Complex Problems of Cardiovascular Disease, Ministry of Education and Science of the Russian Federation
Russian Federation

Evgeniy V. Grigoriev

6 Academician L. S. Barbarash Boulevard, 650002 Kemerovo



E. D. Khilazheva
Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Health of Russia
Russian Federation

Elena D. Khilazheva

1 Partizana Zheleznyaka Str., 660022 Krasnoyarsk, Krasnoyarsk area



References

1. Staveski S. L., Pickler, R.H., Khoury P. R., Ollberding N. J., Donnellan A. L.D., Mauney J. A., Lincoln, P.A., et al. Prevalence of ICU delirium in postoperative pediatric cardiac surgery patients. Pediatr Crit Care Med. 2021; 22 (1): 68–78. DOI: 10.1097/PCC.0000000000002591. PMID: 33065733.

2. Patel A. K., Biagas K. V., Clarke E. C., Gerber L. M., Mauer E., Silver G., Chai P., et al. Delirium in children after cardiac bypass surgery. Pediatr Crit Care Med. 2017; 18 (2): 165–171. DOI: 10.1097/PCC.0000000000001032. PMID: 27977539.

3. Alvarez R. V., Palmer C., Czaja A. S., Peyton C., Silver, G. Traube C., Mourani P. M., et al. Delirium is a common and early finding in patients in the pediatric cardiac intensive care unit. J Pediatr. 2018; 195: 206–212. DOI: 10.1016/j.jpeds.2017.11.064.

4. Köditz H., Drouche A., Dennhardt N., Schmidt M., Schultz M., Schultz B. Depth of anesthesia, temperature, and postoperative delirium in children and adolescents undergoing cardiac surgery. BMC Anesthesiol. 2023; 23 (1): 148. DOI: 10.1186/s12871-023-02102-3. PMID: 37131120.

5. Chomat M. R., Said A. S. Mann J. L., Wallendorf M., Bickhaus A., Figueroa M. Changes in sedation practices in association with delirium screening in infants after cardiopulmonary bypass. Pediatr Cardiol. 2021; 42 (6): 1334–1340. DOI: 10.1007/s00246-021-02616-y. PMID: 33891134.

6. Dechnik A., Traube C. Delirium in hospitalised children. Lancet Child Adolesc Health 2020; 4 (4): 312–321. DOI: 10.1016/s2352-4642(19)30377-3. PMID: 32087768.

7. Goldberg T. E., Chen C., Wang Y., Jung E., Swanson A., Ing C., Garcia P. S., et al. Association of delirium with long-term cognitive decline. JAMA Neurol. 2020; 77 (11): 1373–1381. DOI: 10.1001/jamaneurol.2020.2273. PMID: 32658246.

8. Gunn J. K., Beca J., Hunt R. W., Goldsworthy M., Brizard C. P., Finucane K., Donath S., et al. Perioperative risk factors for impaired neurodevelopment after cardiac surgery in early infancy. Arch Dis Child. 2016; 101 (11): 1010–1016. DOI: 10.1136/archdischild-2015-309449. PMID: 27272973.

9. Houben A., Ghamari S., Fischer A., Neumann C., Baehner T., Ellerkmann R. K. Pediatric emergence delirium is linked to in-creased early postoperative negative behavior within two weeks after adenoidectomy: an observational study. Braz J Anesthesiol. 2024; 74 (5): 744114. DOI: 10.1016/j.bjane.2021.03.008. PMID: 33887334.

10. Koch S., Stegherr A.-M., Rupp L., Kruppa J., Prager C., Kramer S., Fahlenkamp A., et al. Emergence delirium in children is not related to intraoperative burst suppression — prospective, observational electrography study. BMC Anesthesiol. 2019; 19 (1): 146. DOI: 10.1186/s12871-019-0819-2. PMID: 31395011.

11. Hansen T. G. Anesthesia-related neurotoxicity and the developing animal brain is not a significant problem in children. Paediatr Anaesth. 2015; 25 (1): 65–72. DOI: 10.1111/pan.12548. PMID: 25266176.

12. Jevtovic-Todorovic V. General anesthetics and neurotoxicity: how much do we know? Anesthesiol Clin. 2016; 34 (3): 439–451. DOI: 10.1016/j.anclin.2016.04.001. PMID: 27521190.

13. Dahmani S., Stany I., Brasher C., Lejeune C., Bruneau B., Wood C., Nivoche Y., et al. Pharmacological prevention of sevoflurane- and desflurane-related emergence agitation in children: a meta-analysis of published studies. Br J Anaesth. 2010; 104 (2): 216–223. DOI: 10.1093/bja/aep376. PMID: 20047899.

14. Hogue C. W. Jr., Palin C. A., Arrowsmith J. E. Cardiopulmonary bypass management and neurologic outcomes: an evidence- based appraisal of current practices. Anesth Analg. 2006; 103 (1): 21–37. DOI: 10.1213/01.ane.0000220035.82989.79. PMID: 16790619.

15. Hori D., Brown C., Ono M., Rappold T., Sieber F., Gottschalk A., Neufeld K. J., et al. Arterial pressure above the upper cerebral autoregulation limit during cardiopulmonary bypass is associated with postoperative delirium. Br J Anaesth. 2014; 113 (6): 1009–1017. DOI: 10.1093/bja/aeu319. PMID: 25256545ю

16. Hirata Y. Cardiopulmonary bypass for pediatric cardiac surgery. Gen Thorac Cardiovasc Surg. 2018; 66 (2): 65–70. DOI: 10.1007/s11748-017-0870-1. PMID: 29185163.

17. Toomasian C. J., Aiello S. R., Drumright B. L., Major T. C., Bartlett R. H., Toomasian J. M. The effect of air exposure on leucocyte and cytokine activation in an in-vitro model of cardiotomy suction. Perfusion. 2018; 33 (7): 538–545. DOI: 10.1177/0267659118766157. PMID: 29638199.

18. Liu M., Li Y., Gao S., Yan S., Zhang Q., Liu G., Ji B. A novel target to reduce microglial inflammation and neuronal damage after deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 2020; 159 (6): 2431–2444.e7. DOI: 10.1016/j.jtcvs.2019.06.115. PMID: 31564537.

19. Pozhilenkova E. A., Lopatina O. L., Komleva Y. K., Salmin V. V., Salmina A. B. Blood-brain barrier-supported neurogenesis in healthy and diseased brain. Nat Rev Neurosci. 2017; 28 (4): 397–415. DOI: 10.1515/revneuro-2016-0071. PMID: 28195555.

20. Cerejeira J., Firmino H., Vaz-Serra A., Mukaetova-Ladinska E. B. The neuroinflammatory hypothesis of delirium. Acta Neuropathol. 2010; 119 (6): 737–754. DOI: 10.1007/s00401-010-0 674-1. PMID: 20309566.

21. Sun Y., Koyama Y., Shimada S. Inflammation from peripheral organs to the brain: how does systemic inflammation cause neuroinflammation? Front Aging Neurosci. 2022; 14: 903455. DOI: 10.3389/fnagi.2022.903455. PMID: 35783147.

22. Linnerbauer M., Wheeler M. A., Quintana F. J. Astrocyte crosstalk in CNS inflammation. Neuron. 2020; 108 (4): 608–622. DOI: 10.1016/j.neuron.2020.08.012. PMID: 32898475.

23. Kress B. T., Iliff J. J., Xia M., Wang M., Wei H. S., Zeppenfeld D., Xie L., et al. Impairment of para-vascular clearance pathways in the aging brain. Ann Neurol. 2014; 76 (6): 845–861. DOI: 10.1002/ana.24271. PMID: 25204284.

24. Kuo W. T., Odenwald M. A., Turner J. R., Zuo L. Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival. Ann N Y Acad Sci. 2022; 1514 (1): 21–33. DOI: 10.1111/nyas.14798. PMID: 35580994.

25. Li Y., Liu B., Zhao T., Quan X., Han Y., Cheng Y., Chen Y., et al. Comparative study of extracellular vesicles derived from mesenchymal stem cells and brain endothelial cells attenuating blood-brain barrier permeability via regulating Caveolin-1-dependent ZO-1 and Claudin-5 endocytosis in acute ischemic stroke. J Nanobiotechnology. 2023; 21 (1): 70. DOI: 10.1186/s12951-023-01828-z. PMID: 36855156.

26. Yang Z., Lin P., Chen B., Zhang X., Xiao W., Wu S., Huang C., et al. Autophagy alleviates hypoxia-induced blood-brain barrier injury via regulation of CLDN5 (claudin 5). Autophagy. 2021; 17 (10): 3048–3067. DOI: 10.1080/15548627.2020.1851897. PMID: 33280500.

27. Baker R. A., Nikolic A., Onorati F., Alston R. P. 2019 EACTS/EACTA/ EBCP guidelines on cardiopulmonary bypass in in adult cardiac surgery: a tool to better clinical practice. Eur J Cardio-Thorac Surg. 2020; 57 (2): 207–209. DOI: 10.1093/ejcts/ezz358. PMID: 31942985.

28. Ivkin A., Grigoriev E., Mikhailova A. Impact of intraoperative blood transfusion on cerebral injury in pediatric patients undergoing congenital septal heart defect surgery. J Clin Med. 2024; 13 (20): 6050. DOI: 10.3390/jcm13206050. PMID: 39458000.

29. Wittenmeier E., Piekarski F., Steinbicker A. U. Blood product transfusions for children in the perioperative period and for critically ill children. Dtsch Arztebl Int. 2024; 121 (2): 58–65. DOI: 10.3238/arztebl.m2023.0243. PMID: 38051160.

30. Ivkin A. A., Grigoryev E. V., Balakhnin D. G., Chermnykh I. I. Intraoperative transfusion is a risk factor for cerebral injury after cardiac surgery in children: a prospective observational study. Ann Crit Care = Vestnik Intensivnoy Terapii im AI Saltanova. 2023; 1: 101–114. (in Russ.). DOI: 10.21320/1818-474X-2023-1-101-114.

31. Malati Z. A., Pourfathollah A. A., Dabbaghi R., Balagholi S., Javan M. R. Evaluation of a new method of leukocyte extractions from the leukoreduction filter. Indian J Hematol Blood Transfus. 2023; 39 (3): 478–486. DOI: 10.1007/s12288-022-01618-x. PMID: 37304478.

32. Ivkin A. A., Grigoriev E. V., Khilazheva E. D., Morgun A. V. The effect of transfusion and hypoxia on cells in an in vitro model of the neurovascular unit. General Reanimatology = Obshchaya Reanimatologiya. 2024; 20 (1): 37–42. (in Russ/&Eng.). DOI: 10.15360/1813-9779-2024-1-2350.

33. Ivkin A. A., Grigoriev E. V., Tsepokina A. V., Shukevich D. L. Postoperative delirium in children in undergoing treatment of congenital septal heart defects. Messenger of Anesthesiology and Resuscitation = Vestnik Anesteziologii i Reanimatologii, 2021; 18 (2): 62–68. (In Russ.). DOI: 10.21292/2078-5658-2021-18-2-62-68.

34. Naguib A. N., Winch P. D., Tobias J. D., Simic J., Hersey D., Nicol K., Preston T., et al. A single-center strategy to minimize blood transfusion in neonates and children undergoing cardiac surgery. Paediatr Anaesth. 2015; 25 (5): 477–486. DOI: 10.1111/pan.12604. PMID: 25581204.

35. Borisenko D., Ivkin A. A., Shukevich D. L., Kornelyuk R. A. The effect of erythrocyte containing donor blood components in the priming of the cardiopulmonary bypass circuit on the development of systemic inflammation during correction of congenital heart defects in children. General Reanimatology = Obshchaya Reanimatologiya. 2022; 18 (3): 30–37. (in Russ.&Eng.). DOI: 10.15360/1813-9779-2022-3-30-37.

36. Siddharthan V., Kim Y. V., Liu S., Kim K. S. Human astrocytes/astrocyte-conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells. Brain Res. 2007; 1147: 39–50. DOI: 10.1016/j.brainres.2007.02.029. PMID: 17368578.

37. Cenini G., Hebisch M., Iefremova V., Flitsch L. J., Breitkreuz Y., Tanzi R. E., Kim D. Y., et al. Dissecting Alzheimer’s disease pathogenesis in human 2D and 3D models. Mol Cell Neurosci. 2021; 110: 103568. DOI: 10.1016/j.mcn.2020.103568. PMID: 33068718.

38. Wang H., Yang H., Shi Y., Xiao Y., Yin Y., Jiang B., Ren H., et al. Reconstituting neurovascular unit with primary neural stem cells and brain microvascular endothelial cells in three-dimensional matrix. Brain Pathol. 2021; 31 (5): e12940. DOI: 10.1111/bpa.12940. PMID: 33576166.

39. Sokolova V., Nzou G., Van Der Meer S. B., Ruks T., Heggen M., Loza K., Hagemann N., et al. Ultrasmall gold nanoparticles (2 nm) can penetrate and enter cell nuclei in an in vitro 3D brain spheroid model. Acta Biomater. 2020; 111: 349–362. DOI: 10.1016/j.actbio.2020.04.023. PMID: 32413579.

40. Teixeira M. I., Amaral M. H., Costa P. C., Lopes C. M., Lamprou D. A. Recent developments in microfluidic technologies for central nervous system targeted studies. Pharmaceutics. 2020; 12 (6): 542. DOI: 10.3390/pharmaceutics12060542. PMID: 32545276.


Review

For citations:


Ivkin A.A., Grigoriev E.V., Khilazheva E.D. The Impact of Interleukin-6 and Hypoxia on the Expression of Brain Injury Marker Proteins in a Cellular Model of the Neurovascular Unit. General Reanimatology. 2025;21(3):32-40. (In Russ.) https://doi.org/10.15360/1813-9779-2025-3-2540

Views: 516


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)