Artificial Intelligence Applications for Automatic Pain Assessment in the ICU (Short Review)
https://doi.org/10.15360/1813-9779-2025-6-2627
Abstract
Pain remains a major clinical challenge in the intensive care unit (ICU), especially in sedated, mechanically ventilated, or curarized patients due to their inability to self-report and the limited accuracy of behavioral tools. Therefore, innovative approaches must be developed. In this scenario, objective and observer-independent pain assessment can support and improve personalized analgesic management.
The aim of this review is to analyze the current artificial intelligence (AI) applications for automatic pain assessment (APA) in the ICU, focusing on the integration of biosignals, behavioral indicators, and multimodal data to detect nociceptive responses.
A systematic search was conducted in PubMed, Web of Science, and IEEE Xplore databases (2015–2025) using the terms pain assessment, critical care, artificial intelligence, machine learning, facial expression, pupillometry, heart rate variability, and nociception monitor. The scientific output was grouped into three main domains: behavioral and computer-vision methods, autonomic and electrophysiological indices, and multimodal and AI-driven integrated systems.
Conclusion. Although AI systems for APA in the ICU show promising performance, several challenges limit their clinical translation. Signal variability due to pharmacological, neurological, or hemodynamic factors may compromise model reliability. Moreover, the scarcity of labeled ICU datasets can affect generalizability. Ethical, regulatory, and interoperability issues should be addressed. Therefore, for routine implementation, large-scale validation across diverse ICU populations is required to confirm reliability, ensure fairness, and establish clinical utility.
About the Author
Marco CascellaItaly
Department of Medicine, Surgery and Dentistry «Scuola Medica Salernitana»
Via Allende, 84081 Baronissi, Salerno, Italy
References
1. Chanques G., Pohlman A., Kress J. P., Molinari N., de Jong A., Jaber S., Hall J. B. Psychometric comparison of three behavioural scales for the assessment of pain in critically ill patients unable to self-report. Crit Care. 2014; 18 (5): R160. DOI: 10.1186/cc14000. PMID: 25063269.
2. Nordness M. F., Hayhurst C. J., Pandharipande P. Current perspectives on the assessment and management of pain in the intensive care unit. J Pain Res. 2021; 14: 1733–1744. DOI: 10.2147/JPR.S256406. PMID: 34163231.
3. Bourdiol A., Legros V., Vardon-Bounes F., Rimmele T., Abraham P., Hoffmann C., Dahyot-Fizelier C., et al; ALGO-RÉA study group; Atlanréa Group; Société Française d’Anesthésie-Réanimation–SFAR Research Network. Prevalence and risk factors of significant persistent pain symptoms after critical care illness: a prospective multicentric study. Crit Care. 2023; 27 (1): 199. DOI: 10.1186/s13054-023-04491-w. PMID: 37226261.
4. Sandvik R. K. N. M., Mujakic M., Haarklau I., Emilie G., Moi A. L. Improving pain management in the intensive care unit by assessment. Pain Manag Nurs. 2024; 25 (6): 606–614. DOI: 10.1016/j.pmn.2024.06.013. PMID: 39244399.
5. Gomarverdi S., Sedighie L., Seifrabiei M. A., Nikooseresht M. Comparison of two pain scales: behavioral pain scale and critical-care pain observation tool during invasive and noninvasive procedures in intensive care unit-admitted patients. Iran J Nurs Midwifery Res. 2019; 24 (2): 151–155. DOI: 10.4103/ijnmr.IJNMR_47_18. PMID: 30820228.
6. Devlin J. W., Skrobik Y., Gélinas C., Needham D. M., Slooter A. J. C., Pandharipande P. P., Watson P. L., et al. Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med. 2018; 46 (9): e825-e873. DOI: 10.1097/CCM.0000000000003299. PMID: 30113379.
7. Pota V., Coppolino F., Barbarisi A., Passavanti M. B., Aurilio C., Sansone P., Pace M. C. Pain in intensive care: a narrative review. Pain Ther. 2022; 11 (2): 359–367. DOI: 10.1007/s40122-022-00366-0. PMID: 35220551.
8. Cascella M., Ponsiglione A. M., Santoriello V., Romano M., Cerrone V., Esposito D., Montedoro M., et al. Expert consensus on feasibility and application of automatic pain assessment in routine clinical use. J Anesth Analg Crit Care. 2025; 5 (1): 29. DOI: 10.1186/s44158-025-00249-8. PMID: 40457422.
9. Cascella M., Schiavo D., Cuomo A., Ottaiano A., Perri F., Patrone R., Migliarelli S., et al. Artificial intelligence for automatic pain assessment: research methods and perspectives. Pain Res Manag. 2023; 2023: 6018736. DOI: 10.1155/2023/6018736. PMID: 37416623.
10. El-Tallawy S. N., Pergolizzi J. V., Vasiliu-Feltes I., Ahmed R. S., LeQuang J.K., El-Tallawy H. N., Varrassi G., et al. Incorporation of «artificial intelligence» for objective pain assessment: a comprehensive review. Pain Ther. 2024; 13 (3): 293–317. DOI: 10.1007/s40122-024-00584-8. PMID: 38430433.
11. Cascella M., Shariff M. N., Lo Bianco G., Monaco F., Gargano F., Simonini A., Ponsiglione A. M., et al. Employing the artificial intelligence object detection tool YOLOv8 for real-time pain detection: a feasibility study. J Pain Res. 2024; 17: 3681–3696. DOI: 10.2147/JPR.S491574. PMID: 39540033.
12. Szczapa B., Daoudi M., Berretti S., Pala P., Bimbo A. D., Hammal Z. Automatic estimation of self-reported pain by trajectory analysis in the manifold of fixed rank positive semi-definite matrices. IEEE Trans Affect Comput. 2022; 13 (4): 1813–1826. DOI: . PMID: 36452255.
13. Wu C.-L., Liu S.-F., Yu T.-L., Shih S.-J., Chang C.-H., Yang Mao S.-F., Li Y.-S., et al. Deep learning-based pain classifier based on the facial expression in critically ill patients. Front Med (Lausanne). 2022; 9: 851690. DOI: 10.3389/fmed.2022.851690. PMID: 35372435.
14. Yuan X., Cui Z., Xu D., Zhang S., Zhao C., Wu X., Jia T., et al. Occluded facial pain assessment in the ICU using Action Units Guided Network. IEEE J Biomed Health Inform. 2023; PP. DOI: 10.1109/JBHI.2023.3336157. PMID: 37995171.
15. Packiasabapathy S., Rangasamy V., Sadhasivam S. Pupillometry in perioperative medicine: a narrative review. Can J Anaesth. 2021; 68 (4): 566–578. DOI: 10.1007/s12630-020-01905-z. PMID: 33432497.
16. Favre E., Rahmaty Z., Ben-Hamouda N., Miroz J. P., Abed-Maillard S., Rusca M., Oddo M., et al. Nociception assessment with videopupillometry in deeply sedated intensive care patients: discriminative and criterion validations. Aust Crit Care. 2024; 37 (1): 84–90. DOI: 10.1016/j.aucc.2023.07.038. PMID: 37684156.
17. Chanques G., Tarri T., Ride A., Prades A., De Jong A., Carr J., Molinari N., et al. Analgesia nociception index for the assessment of pain in critically ill patients: a diagnostic accuracy study. Br J Anaesth. 2017; 119 (4): 812–820. DOI: 10.1093/bja/aex210. PMID: 29121287.
18. Cascella M., Vitale V. N., D’Antò M., Cuomo A., Amato F., Romano M., Ponsiglione A. M. Exploring biosignals for quantitative pain assessment in cancer patients: a proof of concept. Electronics. 2023; 12 (17): 3716. DOI: 10.3390/electronics12173716.
19. Pouromran F.,, Radhakrishnan S.,, Kamarthi S. Exploration of physiological sensors, features, and machine learning models for pain intensity estimation. PLoS One. 2021; 16 (7): e0254108. DOI: 10.1371/journal.pone.0254108. PMID: 34242325.
20. Cascella M., Di Gennaro P., Crispo A., Vittori A., Petrucci E., Sciorio F., Marinangeli F., et al. Advancing the integration of biosignal-based automated pain assessment methods into a comprehensive model for addressing cancer pain. BMC Palliat Care. 2024; 23 (1): 198. DOI: 10.1186/s12904-024-01526-z. PMID: 39097739.
21. Çalýþkan B., Besir Z., Sen O. Pain monitoring in intensive care: how does the nociception level index affect treatment and prognosis? A randomized, controlled, double-blind trial. Ulus Travma Acil Cerrahi Derg. 2024; 30 (6): 415–422. DOI: 10.14744/tjtes.2024.95533. PMID: 38863294.
22. Gélinas C., Shahiri T. S., Richard-Lalonde M., Laporta D., Morin J. F., Boitor M., Ferland C. E., et al. Exploration of a multi-parameter technology for pain assessment in postoperative patients after cardiac surgery in the intensive care unit: the nociception level index (NOL) TM. J Pain Res. 2021; 14: 3723–3731. DOI: 10.2147/JPR.S332845. PMID: 34908872.
23. Shahiri T. S., Richard-Lalonde M., Richebé P., Gélinas C. Exploration of the nociception level (NOL™) index for pain assessment during endotracheal suctioning in mechanically ventilated patients in the intensive care unit: an observational and feasibility study. Pain Manag Nurs. 2020; 21 (5): 428–434. DOI: 10.1016/j.pmn.2020.02.067. PMID: 32354616.
24. Bonvecchio E., Vailati D., Mura F. D., Marino G. Nociception level index variations in ICU: curarized vs non-curarized patients — a pilot study. J Anesth Analg Crit Care. 2024; 4 (1): 57. DOI: 10.1186/s44158-024-00193-z. PMID: 39164731.
25. Othman E., Werner P., Saxen F., Al-Hamadi A., Gruss S., Walter S. Automated electrodermal activity and facial expression analysis for continuous pain intensity monitoring on the X-ITE pain database. Life (Basel). 2023; 13 (9): 1828. DOI: 10.3390/life13091828. PMID: 37763232.
26. Nerella S., Guan Z., Siegel S., Zhang J., Zhu R., Khezeli K., Bihorac A., et al. AI-enhanced intensive care unit: revolutionizing patient care with pervasive censing. arXiv: 2303.06252. DOI: 10.48550/arXiv.2303.06252.
27. Ledowski T. Objective monitoring of nociception: a review of current commercial solutions. Br J Anaesth. 2019; 123 (2): e312–e321. DOI: 10.1016/j.bja.2019.03.024. PMID: 31047645.
28. Chen D., Zhang H., Kavitha P. T., Loy F. L., Ng S. H., Wang C., Phua K. S., et al. Scalp EEG-based pain detection using a convolutional neural network. IEEE Trans Neural Syst Rehabil Eng. 2022; 30: 274–285. DOI: . PMID: 35089860.
29. Kobayashi N., Watanabe K., Murakami H., Yamauchi M. Continuous visualization and validation of pain in critically ill patients using artificial intelligence: a retrospective observational study. Sci Rep. 2023; 13 (1): 17479. DOI: 10.1038/s41598-023-44970-2. PMID: 37838818.
30. Fratino S., Peluso L., Talamonti M., Menozzi M., Costa Hirai L. A., Lobo F. A., Prezioso C., et al. Evaluation of nociception using quantitative pupillometry and skin conductance in critically ill unconscious patients: a pilot study. Brain Sci. 2021; 11 (1): 109. DOI: 10.3390/brainsci11010109. PMID: 33467451.
31. Cascella M., Laudani A., Scarpati G., Piazza O. Ethical issues in pain and palliation. Curr Opin Anaesthesiol. 2024; 37 (2): 199–204. DOI: 10.1097/ACO.0000000000001345. PMID: 38288778.
Review
For citations:
Cascella M. Artificial Intelligence Applications for Automatic Pain Assessment in the ICU (Short Review). General Reanimatology. https://doi.org/10.15360/1813-9779-2025-6-2627





































