Preview

General Reanimatology

Advanced search

Casual Relationship between the GUT Microbiota Dysbiosis, Intestinal Motility, and Development of Protein-Energy Malnutrition in Patients in a Chronic Critical State after Severe Brain Damage

https://doi.org/10.15360/1813-9779-2025-6-2607

Abstract

Protein-energy malnutrition (PEM) remains one of the most pressing issues in patients with severe traumatic brain injury in intensive care units (ICUs), as it is highly prevalent, difficult to manage, and its causes are not fully understood.
The aim of the study was to assess the influence of gut microbial imbalance and gastrointestinal motility on the development of malnutrition in patients in a chronic critical state and severe brain damage.
Materials and methods. A single-center prospective observational study included 31 patients (median age 52 years; 68% males) aged 18–74 years with traumatic brain injury or stroke requiring ICU stay for more than 5 days and enteral tube feeding. Patients with diabetes mellitus, acute multiple organ failure (MOF), shock, implanted devices, or tracheoesophageal fistula were excluded. Nutritional status was assessed at baseline and on Day 20 using the Russian malnutrition scale and the Global Leadership Initiative on Malnutrition (GLIM) criteria. Additionally, clinical outcomes, anthropometric data, gastrointestinal biomarkers, gut microbiota composition, electrogastroenterography (EGEG) and functional scales parameters were recorded.
Results. Moderate and severe malnutrition according to the GLIM criteria was found at baseline in 29.1% of patients, and in 27.7% of patients on Day 20 (p = 0.9), while according to the Russian scale these numbers were 61.3% and 78.6%, respectively (p = 0.8). Dynamics of clinical scales, functional indicators, and gastrointestinal biomarkers during the follow-up revealed no clinically significant changes. Significant and persistent deviations 2 from reference values in gut microbiota composition (decrease in the content of E. coli, p = 0.026; increase in Enterobacter spp., p = 0.020) and EGEG parameters were recorded at both evaluation time-points. Identified PEM was also associated with impaired gastrointestinal motility.
Conclusion. The data indicate a statistically significant relationship between PEM, changes in the gut microbiota and gastrointestinal motility, which confirms the important role of these factors in PEM pathogenesis in patients with severe brain damage in a chronic critical state.

About the Authors

E. A. Chernevskaya
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Ministry of Education and Science of Russia
Russian Federation

Ekaterina A. Chernevskaya

25 Petrovka Str., Bldg. 2, 107031 Moscow



A. E. Shestopalov
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Ministry of Education and Science of Russia; Russian Medical Academy of Continuous Professional Education, Ministry of Health of Russia
Russian Federation

Alexander E. Shestopalov

25 Petrovka Str., Bldg. 2, 107031 Moscow;

2/1 Barricadnaiay Str., Bldg. 1, 125993 Moscow



A. V. Yakovleva
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Ministry of Education and Science of Russia
Russian Federation

Alexandra V. Yakovleva

25 Petrovka Str., Bldg. 2, 107031 Moscow



M. Ya. Yadgarov
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Ministry of Education and Science of Russia; V. M. Gorbatov Federal Research Center for Food Systems, RAS
Russian Federation

Mikhail Ya. Yadgarov

25 Petrovka Str., Bldg. 2, 107031 Moscow;

26 Talalikhina Str., 109316 Moscow



L. B. Berikashvili
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Ministry of Education and Science of Russia
Russian Federation

Levan B. Berikashvili

25 Petrovka Str., Bldg. 2, 107031 Moscow



P. A. Polyakov
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Ministry of Education and Science of Russia
Russian Federation

Petr A. Polyakov

25 Petrovka Str., Bldg. 2, 107031 Moscow



I. V. Sergeev
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Ministry of Education and Science of Russia
Russian Federation

Ivan V. Sergeev

25 Petrovka Str., Bldg. 2, 107031 Moscow



I. V. Kuznetsov
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Ministry of Education and Science of Russia
Russian Federation

Ivan V. Kuznetsov

25 Petrovka Str., Bldg. 2, 107031 Moscow



A. B. Lisitsyn
V. M. Gorbatov Federal Research Center for Food Systems, RAS
Russian Federation

Andrey B. Lisitsyn

26 Talalikhina Str., 109316 Moscow



A. A. Yakovlev
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Ministry of Education and Science of Russia
Russian Federation

Alexey A. Yakovlev

25 Petrovka Str., Bldg. 2, 107031 Moscow



V. V. Likhvantsev
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Ministry of Education and Science of Russia
Russian Federation

Valery V. Likhvantsev

25 Petrovka Str., Bldg. 2, 107031 Moscow



References

1. Polcz V. E., Barrios E. L., Larson S. D., Efron P. A., Rincon J. C. Charting the course for improved outcomes in chronic critical illness: therapeutic strategies for persistent inflammation, immunosuppression, and catabolism syndrome (PICS). Br J Anaesth. 2024; 133 (2): 260–263. DOI: 10.1016/j.bja.2024.05.005. PMID: 38902117.

2. Morris R., Al Tannir A. H., Chipman J., Charles A., Ingraham N. E., Kalinoski M., Bolden L., et al. Deriving a definition of chronic critical illness: ICU stay of 10 days. Am J Surg. 2024; 237: 115767. DOI: 10.1016/j.amjsurg.2024.05.008.

3. Berikashvili L. B., Shestopalov A. E., Polyakov P. A., Yakovleva A. V., Yadgarov M. Y., Kuznetsov I. V., Said M. T. S. M., et al. The Neurological metabolic phenotype in prolonged/chronic critical illness: propensity score matched analysis of nutrition and outcomes. Nutr. 2025; 17 (14). DOI: 10.3390/nu17142302.

4. Ko S.-H., Shin Y.-I. Nutritional supplementation in stroke rehabilitation: a narrative review. Brain Neurorehabil. 2022; 15 (1): e3. DOI: 10.12786/bn.2022.15.e3. PMID: 36743847.

5. Shestopalov A. E., Yakovleva A. V., Yadgarov M. Y., Sergeev I. V., KuzovlevA.N. Prevalence and impact of malnutrition risk on outcomes in critically ill patients with traumatic brain injury and stroke: a retrospective cohort study using electronic health records. Nutrients. 2024; 16 (15): 2396. DOI: 10.3390/nu16152396. PMID: 39125277.

6. Powers J., Samaan K. Malnutrition in the ICU patient population. Crit Care Nurs Clin North Am. 2014; 26 (2): 227–242. DOI: 10.1016/j.ccell.2014.01.003. PMID: 24878208.

7. Oami T., Shimazui T., Yumoto T., Otani S., Hayashi Y., Coopersmith C. M. Gut integrity in intensive care: alterations in host permeability and the microbiome as potential therapeutic targets. J Intensive Care. 2025; 13 (1): 16. DOI: 10.1186/s40560-025-00786-y. PMID: 40098052.

8. Jung C. Y., Bae J. M. Pathophysiology and protective approaches of gut injury in critical illness. Yeungnam Univ J Med. 2021; 38 (1): 27–33. DOI: 10.12701/yujm.2020.00703. PMID: 33022904.

9. Sergeev I. V., Petrova M. V., Shestopalov A. E., Kanarsky M. M., Lukyanets O. B., Yarotskaya I. A., Nekrasova Y. Y. Nutritional status of patients with chronic critical illness. General Reanimatology = Obshchaya Reanimatologiya. 2023; 19 (4): 4–11. (in Russ.&Eng.). DOI: 10.15360/1813-9779-2023-4-2329.

10. Ziaka M., Exadaktylos A. Pathophysiology of acute lung injury in patients with acute brain injury: the triple-hit hypothesis. Crit Care. 2024; 28 (1): 71. DOI: 10.1186/s13054-024-04855-w. PMID: 38454447.

11. Wozniak H., Beckmann T. S., Fröhlich L., Soccorsi T., Le Terrier C., de Watteville A., Schrenzel J., et al. The central and biodynamic role of gut microbiota in critically ill patients. Crit Care. 2022; 26 (1): 250. DOI: 10.1186/s13054-022-04127-5. PMID: 35982499.

12. Chernevskaya E., Klimenko N., Pautova A., Buyakova I., Tyakht A., Beloborodova N. Host-microbiome interactions mediated by phenolic metabolites in chronically critically ill patients. Metabolites. 2021; 11 (2): 1–16. DOI: 10.3390/metabo11020122. PMID: 33672777.

13. Tatucu-Babet O. A., Forsyth A., Udy A., Radcliffe J., Benheim D., Calkin C., Ridley E. J., et al. Use of a sensitive multisugar test for measuring segmental intestinal permeability in critically ill, mechanically ventilated adults: a pilot study. JPEN J Parenter Enter Nutr. 2022; 46 (2): 454–461. DOI: 10.1002/jpen.2110. PMID: 33760268.

14. Pachisia A. V., Pal D., Govil D. Gastrointestinal dysmotility in the ICU. Curr Opin Crit Care. 2025; 31 (2): 179–88. DOI: 10.1097/MCC.0000000000001252. PMID: 39991794.

15. Camilleri M. Abnormal gastrointestinal motility is a major factor in explaining symptoms and a potential therapeutic target in patients with disorders of gut–brain interaction. Gut. 2023; 72 (12): 2372–2380. DOI: 10.1136/gutjnl-2023-330542. PMID: 37666657.

16. Wang Y., Chen J. D.Z., Nojkov B. Diagnostic methods for evaluation of gastric motility—a mini review. Diagnostics (Basel). 2023; 13 (4): 803. DOI: 10.3390/diagnostics13040803. PMID: 36832289.

17. Matsuura Y., Yamamoto T., Takada M., Shiozawa T., Takada H. [Application of electrogastrography to public health]. Nihon Eiseigaku Zasshi. 2011; 66 (1): 54–63. DOI: 10.1265/jjh.66.54.

18. Elahmadawy M. A., El-Ayadi M., Ahmed S., Refaat A., Eltaoudy M. H., Maher E., Taha H., et al. F18-FET PET in pediatric brain tumors: integrative analysis of image derived parameters and clinico-pathological data. Q J Nucl Med Mol Imaging. 2023; 67 (1): 46–56. DOI: 10.23736/S1824-4785.20.03267-7. PMID: 33300749.

19. Yin J., Chen J. D. Z. Electrogastrography: methodology, validation and applications. J Neurogastroenterol Motil. 2013; 19 (1): 5–17. DOI: 10.5056/jnm.2013.19.1.5. PMID: 23350042.

20. von Elm E., Altman D. G., Egger M., Pocock S. J., Gøtzsche P. C., Vandenbroucke J. P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Intern Med. 2007; 147 (8): 573–577. DOI: 10.7326/0003-4819-147-8-200710160-00010.

21. Chan A.-W., Tetzlaff J. M., Gøtzsche P. C., Altman D. G., Mann H., Berlin J. A., Dickersin K., et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013; 346: e7586. DOI: 10.1136/bmj.e7586.

22. Likhvantsev V. V., Berikashvili L. B., Yadgarov M. Y., Yakovlev A. A., Kuzovlev A. N. The Tri-Steps Model of Critical Conditions in Intensive Care: Introducing a New Paradigm for Chronic Critical Illness. J Clin Med. 2024; 13 (13):. DOI: 10.3390/jcm13133683.

23. de van der Schueren M. A.E., Keller H., GLIM Consortium, Cederholm T., Barazzoni R., Compher C., Correia M. I.T .D., et al. Global Leadership Initiative on Malnutrition (GLIM): guidance on validation of the operational criteria for the diagnosis of protein-energy malnutrition in adults. Clin Nutr. 2020; 39 (9): 2872–80. DOI: 10.1016/j.clnu.2019.12.022. PMID: 32563597.

24. Shirakabe A., Hata N., Kobayashi N., Okazaki H., Matsushita M., Shibata Y., Nishigoori S., et al. The prognostic impact of malnutrition in patients with severely decompensated acute heart failure, as assessed using the Prognostic Nutritional Index (PNI) and Controlling Nutritional Status (CONUT) score. Heart Vessels. 2018; 33 (2): 134–144. DOI: 10.1007/s00380-017-1034-z. PMID: 28803356.

25. Butov M. A., Shurpo E. M., Kuznetsov P. S., Dzhurzhevich M. D. Normative values for peripheral electrical gastroenterocolonography. Ter Arkh. 2015; 87 (2): 45–8. (in Russ.). DOI: 10.17116/terarkh201587245-48. PMID: 25864348.

26. Di Vincenzo O., Luisi M. L.E., Alicante P., Ballarin G., Biffi B., Gheri C. F., Scalfi L. The assessment of the risk of malnutrition (undernutrition) in stroke patients. Nutrients. 2023; 15 (3). DOI: 10.3390/nu15030683. PMID: 36771390.

27. Verheul E. A. H., Koole D., Dijkink S., Krijnen P., Hoogendoorn J. M., Arbous S., Peters R., et al. Association of modified NUTRIC score for nutritional risk and in-hospital developed malnutrition in adults with severe injuries: a prospective observational cohort study. Eur J Trauma Emerg Surg. 2025; 51 (1): 214. DOI: 10.1007/s00068-025-02887-7. PMID: 40394257.

28. Liu P., Tian H., Ji T., Zhong T., Gao L., Chen L. Predictive value of malnutrition, identified via different nutritional screening or assessment tools, for functional outcomes in patients with stroke: a systematic review and meta-analysis. Nutrients. 2023; 15 (14): 3280. DOI: 10.3390/nu15143280. PMID: 37513698.

29. Wei Y-.C., Chen C-.K., Lin C., Shyu Y.-C., Chen P.-Y. Life after traumatic brain injury: effects on the lifestyle and quality of life of community-dwelling patients. Neurotrauma Rep. 2024; 5 (1): 159–171. DOI: 10.1089/neur.2023.0113. PMID: 38463415.

30. Ma E. L., Smith A. D., Desai N., Cheung L., Hanscom M., Stoica B. A., Loane D. J., et al. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice. Brain Behav Immun. 2017; 66: 56–69. DOI: 10.1016/j.bbi.2017.06.018. PMID: 28676351.

31. Klaus D. A., Motal M. C., Burger-Klepp U., Marschalek C., Schmidt E. M., Lebherz-Eichinger D., Krenn C. G., et al. Increased plasma zonulin in patients with sepsis. Biochem Medica (Zagreb). 2013; 23 (1): 107–11. DOI: 10.11613/bm.2013.013.PMID: 23457771.

32. Greis C., Rasuly Z., Janosi R. A., Kordelas L., Beelen D. W., Liebregts T. Intestinal T lymphocyte homing is associated with gastric emptying and epithelial barrier function in critically ill: a prospective observational study. Crit Care. 2017; 21 (1): 70. DOI: 10.1186/s13054-017-1654-9. PMID: 28327177.

33. Martinez E. E., Zurakowski D., Pereira L., Freire R., Emans J. B., Nurko S., Duggan C. P., et al. Interleukin-10 and zonulin are associated with postoperative delayed gastric emptying in critically ill surgical pediatric patients: a prospective pilot study. JPEN J Parenter Enteral Nutr. 2020; 44 (8): 1407–16. DOI: 10.1002/jpen.1874. PMID: 32386238.

34. Potrykus M., Czaja-Stolc S., Stankiewicz M., Kaska Ł., Małgorzewicz S. Intestinal microbiota as a contributor to chronic inflammation and its potential modifications. Nutrients. 2021; 13 (11): 3839. DOI: 10.3390/nu13113839. PMID: 34836095.

35. Shimizu K., Ogura H., Asahara T., Nomoto K., Morotomi M., Nakahori Y., Osuka A., et al. Gastrointestinal dysmotility is associated with altered gut flora and septic mortality in patients with severe systemic inflammatory response syndrome: a preliminary study. Neurogastroenterol Motil. 2011; 23 (4): 330–5, e157. DOI: 10.1111/j.1365-2982.2010.01653.x. PMID: 21199173.

36. Schmidt S. B., Kulig W., Winter R., Vasold A. S., Knoll A. E., Rollnik J. D. The effect of a natural food based tube feeding in minimizing diarrhea in critically ill neurological patients. Clin Nutr. 2019; 38 (1): 332–340. DOI: 10.1016/j.clnu.2018.01.007. PMID: 29358002.

37. Ghaemi M., Kheradmand D. The gut-brain axis in traumatic brain Injury: literature review. J Clin Neurosci. 2025; 136: 111258. DOI: 10.1016/j.jocn.2025.111258. PMID: 40250160.

38. Cotoia A., Charitos I. A., Corriero A., Tamburrano S., Cinnella G. The role of macronutrients and gut microbiota in neuroinflammation post-traumatic brain injury: a narrative review. Nutr. 2024; 16 (24): 4359. DOI: 10.3390/nu16244359. PMID: 39770985.

39. Chiu L. S., Anderton R. S. The role of the microbiota–gut–brain axis in long-term neurodegenerative processes following traumatic brain injury. Eur J Neurosci. 2023; 57 (2): 400–18. DOI: 10.1111/ejn.15892. PMID: 36494087.

40. Tripathi A., Pandey V. K., Panesar P. S., Taufeeq A., Mishra H., Rustagi S., Malik S., et al. Fermentative production of vitamin B12 by Propionibacterium shermanii and Pseudomonas denitrificans and its promising health benefits: a review. Food Sci Nutr. 2024; 12 (11): 8675–91. DOI: 10.1002/fsn3.4428. PMID: 39619983.

41. Procházková N., Falony G., Dragsted L. O., Licht T. R., Raes J., Roager H. M. Advancing human gut microbiota research by considering gut transit time. Gut. 2023; 72 (1): 180–91. DOI: 10.1136/gutjnl-2022-328166. PMID: 36171079.

42. Waclawiková B., Codutti A., Alim K., El Aidy S. Gut microbiotamotility interregulation: insights from in vivo, ex vivo and in silico studies. Gut Microbes. 2022; 14 (1): 1997296. DOI: 10.1080/19490976.2021.1997296. PMID: 34978524.


Review

For citations:


Chernevskaya E.A., Shestopalov A.E., Yakovleva A.V., Yadgarov M.Ya., Berikashvili L.B., Polyakov P.A., Sergeev I.V., Kuznetsov I.V., Lisitsyn A.B., Yakovlev A.A., Likhvantsev V.V. Casual Relationship between the GUT Microbiota Dysbiosis, Intestinal Motility, and Development of Protein-Energy Malnutrition in Patients in a Chronic Critical State after Severe Brain Damage. General Reanimatology. 2025;21(6):35-44. (In Russ.) https://doi.org/10.15360/1813-9779-2025-6-2607

Views: 39


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)