Preview

General Reanimatology

Advanced search

Effect of Rapamycin on Staurosporine-Induced Cardiac Myofibroblast Death

https://doi.org/10.15360/1813-9779-2025-6-2593

Abstract

Many cardiac diseases are associated with an excessive accumulation of myofibroblasts, characterized by increased production of extracellular matrix proteins and resistance to apoptosis, which leads to progression of fibrosis and cardiac dysfunction. Targeting the mechanisms of myofibroblast elimination is a promising strategy for treating fibrosis that requires further investigation.
The aim of this work was to determine the ability of the autophagy activator rapamycin to affect the staurosporin-induced death of cardiac myofibroblasts.
Materials and methods. In vivo modeling of cardiac fibrosis was performed using a mouse model of aortic arch ligation. In vitro studies used myofibroblasts obtained by differentiation of cardiac fibroblasts in presence of transforming growth factor beta 1 (TGFb1). To study the mechanism of myofibroblasts elimination, a cell model was developed using staurosporine, an alkaloid that can initiate apoptosis in a culture of cardiac myofibroblasts. The activity of apoptosis and autophagy was studied using immunofluorescence staining, immunoblotting, and flow cytometry.
Results. It was shown that pressure-induced cardiac overload causes the accumulation of myofibroblasts characterized by a low rate of apoptosis (annexin V+ cells in sham-operated hearts and after modeling pressure overload (0.0016 ± 0.0006% and 0.0019 ± 0.0009%; p = 0.32, n = 10), leading to marked interstitial fibrosis in the myocardium. It was found that rapamycin is able to enhance the effect of staurosporin and cause increased myofibroblast death due to autophagy-associated mechanisms (control 1.68 ± 0.66% (n = 4); staurosporin 65.8 ± 2.63% (n = 4); rapamycin + staurosporin 73.73 ± 0.67% (n = 4); control vs staurosporin p 0.0001; control vs rapamycin + staurosporin p 0.0001; staurosporin vs rapamycin + staurosporin p = 0.0071).
Conclusion. Rapamycin enhanced myofibroblast apoptosis induced by staurosporine, which may be related to regulation of the mTOR signaling and increased autophagy activity. The molecular mechanisms of this process require further research.

About the Authors

K. V. Dergilev
Laboratory of Angiogenesis, Experimental Cardiology Institute, Acad. Chazov National Medical Research Center for Cardiology, Ministry of Health of Russia
Russian Federation

Konstantin V. Dergilev

15a Cherepkovskaya 3rd Str., 121552 Moscow



Z. I. Tsokolaeva
Laboratory of Angiogenesis, Experimental Cardiology Institute, Acad. Chazov National Medical Research Center for Cardiology, Ministry of Health of Russia; V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

Zoya I. Tsokolaeva

15a Cherepkovskaya 3rd Str., 121552 Moscow;

25 Petrovka Str., Bldg. 2, 107031 Moscow



A. A. Dolgodvorova
Laboratory of Angiogenesis, Experimental Cardiology Institute, Acad. Chazov National Medical Research Center for Cardiology, Ministry of Health of Russia
Russian Federation

Aleria A. Dolgodvorova

15a Cherepkovskaya 3rd Str., 121552 Moscow



E. V. Parfenova
Laboratory of Angiogenesis, Experimental Cardiology Institute, Acad. Chazov National Medical Research Center for Cardiology, Ministry of Health of Russia
Russian Federation

Elena V. Parfenova

15a Cherepkovskaya 3rd Str., 121552 Moscow



References

1. Henderson N. C., Rieder F., Wynn T. A. Fibrosis: from mechanisms to medicines. Nature. 2020; 587 (7835): 555–566.

2. Mensah G. A., Fuster V., Murray C. J. L., Roth G. A. Global burde of cardiovascular diseases and risks, 1990–2022. J Am College Cardiol. 2023; 82 (25): 2350–2473. DOI: 10.1016/j.jacc.2023.11.007. PMID: 38092509.

3. Bruder O., Wagner A., Jensen C. J., Schneider S., Ong P., Kispert E. -M., Nassestein K., et al. Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010; 56 (11): 875–87. DOI: 10.1016/j.jacc.2010.05.007. PMID: 20667520.

4. O’Hanlon R., Grasso A., Roughton M., Moon J. C., Clark S., Wage R., Webb J., et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010; 56 (11): 867–874. DOI: 10.1016/j.jacc.2010.05.010. PMID: 20688032.

5. Harris K. M., Spirito P., Maron M. S., Zenovich A. G., Formisano F., Lesser J. R., Mackey-Bojack S., et al. Prevalence, clinical profile, and significance of left ventricular remodeling in the end-stage phase of hypertrophic cardiomyopathy. Circulation. 2006; 114 (3): 216–225. DOI: 10.1161/CIRCULATIONAHA.105.583500. PMID: 16831987.

6. Poddi S., Lefter C. L., Linardi D., Ardigò A., Luciani G. B., Rungatscher A. Myocardial fibrosis: assessment, quantification, prognostic signification, and anti-fibrosis targets: a state-of-the-art review. J Cardiovasc Dev Dis. 2025; 12 (5): 192. DOI: 10.3390/jcdd12050192. PMID: 40422963.

7. Leask A. TGFβ, cardiac fibroblasts, and the fibrotic response. Cardiovasc Res. 2007; 74 (2): 207–212. DOI: PMID: 16919613

8. Hinz B., Phan S. H., Thannickal V. J., Galli A., Bochaton-Piallat M. L., Gabbiani G. The myofibroblast: one function, multiple origins. Am J Pathol. 2007; 170 (6): 1807–16. DOI: 10.2353/ajpath.2007.070112. PMID: 17525249.

9. Krenning G., Zeisberg E. M., Kalluri R. The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol. 2010; 225(3): 631–7. DOI: 10.1002/jcp.22322. PMID: 20635395.

10. Lin H., Wang X., Chung M., Cai S., Pan Y. Direct fibroblast reprogramming: an emerging strategy for treating organic fibrosis. J Transl Med. 2025; 23 (1): 240. DOI: 10.1186/s12967-024-06060-3. PMID: 40016790.

11. Eissa L. A., Marawan A. M., Marawan M. E., Abass S. A. Autophagy in disease management: Exploring the potential of natural products as targeted therapies. Pathol Res Pract. 2025; 272: 156077. DOI: 10.1016/j.prp.2025.156077. PMID: 40516139.

12. Dergilev K. V., Goltseva Yu.D., Tsokolayeva Z. I., Beloglazova I. B., Yarushkina I. S., Azimova E. D., Ratner E. I., et al. Autophagy activity in cardiac fibroblasts in the early stages of cardiac dysfunction induced by pressure overload. Russian Cardiology Bulletin=Kardiologicheskiy Vestnik. 2025; 20 (1): 13–21. (in Russ.). DOI: 10.17116/Cardiobulletin20252001113.

13. Ma J., Tan X., Feng J., Li Z., Tan S., Li B., Zhao L. Research progress on the regulation of autophagy in cardiovascular diseases by chemokines. Open Life Sci. 2025; 20 (1): 20221026. DOI: 10.1515/biol-2022-1026. PMID: 40535169.

14. Dergilev K. V., Makarevich P. I., Tsokolaeva Z. I., Boldyreva M. A., Beloglazova I. B., Zubkova E. S., Menshikov M. Y., et al. Comparison of cardiac stem cell sheets detached by Versene solution and from thermoresponsive dishes reveals similar properties of constructs. Tissue and Cell. 2017; 49 (1): 64–71. DOI: 10.1016/j.tice.2016.12.001. PMID: 28041835.

15. Dergilev K. V., Shevchenko E. K., Tsokolaeva Z. I., Beloglazova I. B., Zubkova E. S., Boldyreva M. A., Menshikov M. Y., et al. Cell sheet comprised of mesenchymal stromal cells overexpressing stem cell factor promotes epicardium activation and heart function improvement in a rat model of myocardium infarction. Int J Mol Sci. 2020; 21 (24): 9603. DOI: 10.3390/ijms21249603. PMID: 33339427

16. Mukade Y., Kobayashi S., Nishijima Y., Kimura K., Watanabe A,, Ikota H., Shirabe K., et al. Phosphotungstic acid–treated picrosirius red staining improves whole-slide quantitative analysis of collagen in histological specimens. J Histochem Cytochem. 2023; 71 (1): 11–26. DOI: 10.1369/00221554221141140. PMID: 36433833.

17. Hu X.-J., Wu W.-C.-H., Dong N.-G., Shi J.-W., Liu J.-W., Chen S., Deng C., et al. Role of TGF-β1 signaling in heart valve calcification induced by abnormal mechanical stimulation in a tissue engineering model. Curr Med Sci. 2018; 38 (5): 765–75. DOI: 10.1007/s11596-018-1943-9. PMID: 30341511.

18. Bernacchioni C., Capezzuoli T., Vannuzzi V., Malentacchi F., CastiglioneF., Cencetti F., Ceccaroni M., et al. Sphingosine 1-phosphate receptors are dysregulated in endometriosis: possible implication in transforming growth factor β-induced fibrosis. Fertil Steril. 2021; 115 (2): 501–511. DOI: 10.1016/j.fertnstert.2020.08.012. PMID: 32907751.

19. Wenner C. E., Yan S. Biphasic role of TGF‐β1 in signal transduction and crosstalk. J Cell Physiol. 2003; 196 (1): 42–50. DOI: 10.1002/jcp.10243. PMID: 12767039.

20. Guo S., Liang Y., Murphy S. F., Huang A., Shen H., Kelly D. F., Sobrado P., et al. A rapid and high content assay that measures cyto-ID-stained autophagic compartments and estimates autophagy flux with potential clinical applications. Autophagy. 2015; 11 (3): 560–572. DOI: 10.1080/15548627.2015.1017181. PMID: 25714620.

21. Brokowska J., Gaffke L., Pierzynowska K., Węgrzyn G. Enhanced efficiency of the basal and induced apoptosis process in mucopolysaccharidosis IVA and IVB human fibroblasts. Int J Mol Sci. 2023; 24 (18): 14119. DOI: 10.3390/ijms241814119. PMID: 37762422.

22. Gui Y., Lu Q., Gu M., Wang M., Liang Y., Zhu X., Xue X., et al. Fibroblast mTOR/PPARγ/HGF axis protects against tubular cell death and acute kidney injury. Cell Death Differ. 2019; 26 (12): 2774–89. DOI: 10.1038/s41418-019-0336-3. PMID: 31024074.

23. Sarkar R., Choudhury S. M., Kanneganti T. D. Classical apoptotic stimulus, staurosporine, induces lytic inflammatory cell death, PANoptosis. J Biol Chem. 2024; 300 (9): 107676. DOI: 10.1016/j.jbc.2024.107676. PMID: 39151726.

24. Schmelzle T., Hall M. N. TOR, a central controller of cell growth. Cell. 2000; 103 (2): 253–262. DOI: 10.1016/s0092-8674(00)00117-3. PMID: 11057898.

25. Dergilev K. V., Tsokolayeva Z. I., Gureyenkov A. D., Rasulova M. T., Parfenova E. V. Autophagy activity in epicardial cells in acute pericarditis. General Reanimatology=Obshchaya Reanimatologiya. 2024; 20(1): 43–49. (in Russ.&Eng.). DOI: 10.15360/1813-9779-2024-2366

26. Luo Q., Zhao Y., Ren P., Liu X., Chen Y., Ying Q., Zhou J. Autophagy — unlocking new dimensions in the pathology and treatment of depression. Cell. 2025; 14 (11): 795. DOI: 10.3390/cells14110795. PMID: 40497971.

27. He C., Klionsky D. J. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009; 43 (1): 67–93. DOI: 10.1146/annurev-genet-102808-114910. PMID: 19653858.

28. Nah J., Zablocki D., Sadoshima J. The role of autophagic cell death in cardiac disease. J Mol Cell Cardiol. 2022; 173: 16–24. DOI: 10.1016/j.yjmcc.2022.08.362. PMID: 36084743.

29. Yang X., Wu H., Zhou G., Zhang D., Yang Q., Liu Y. Autosis: a new form of cell death in myocardial ischemia–reperfusion injury. Mol Cell Biochem. 2025; 480 (1): 91–101. DOI: 10.1007/s11010-024-04988-0. PMID: 38594455.

30. Ritter L. M., Annear N. M. P., Baple E. L., Ben-Chaabane L. Y., Bodi I., Brosson L., Cadwgan J. E., et al. mTOR pathway diseases: challenges and opportunities from bench to bedside and the mTOR node. Orphanet J Rare Dis. 2025; 20 (1): 256. DOI: 10.1186/s13023-025-03740-1. PMID: 40426219.

31. Kim J., Kundu M., Viollet B., Guan K.-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011; 13 (2): 132–41. DOI: 10.1038/ncb2152. PMID: 21258367.

32. Egan D., Kim J., Shaw R. J., Guan K.-L. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy. 2011; 7 (6): 643–644. DOI: 10.4161/auto.7.6.15123. PMID: 21460621.

33. Martina J. A., Chen Y., Gucek M., Puertollano R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy. 2012; 8 (6): 903–914. DOI: 10.4161/auto.19653. PMID: 22576015.

34. Sardiello M., Palmieri M., Di Ronza A., Medina D. L., Valenza M., Gennarino V. A., Malta C. D., et al. A gene network regulating lysosomal biogenesis and function. Science. 2009; 325 (5939): 473–477. DOI: 10.1126/science.1174447. PMID: 19556463.

35. Settembre C., Ballabio A. TFEB regulates autophagy: an integrated coordination of cellular degradation and recycling processes. Autophagy. 2011; 7 (11): 1379–81. DOI: 10.4161/auto.7.11.17166. PMID: 21785263.

36. Heitman J. On the discovery of TOR as the target of rapamycin. PLoS Pathog. 2015; 11 (11): e1005245. DOI: 10.1371/journal.ppat.1005245. PMID: 26540102.

37. Zhao W.-J., Qian Y., Zhang Y.-F., Yang A.- H., Cao J.-X., Qian H.-Y., Liu Y., et al. Endothelial FOSL1 drives angiotensin II-induced myocardial injury via AT1R-upregulated MYH9. Acta Pharmacol Sin. 2025; 46 (4): 922–939. DOI: 10.1038/s41401-024-01410-9. PMID: 39592734.

38. Rüegg U. T., Gillian B. Staurosporine, K-252 and UCN-01: potent but nonspecific inhibitors of protein kinases. Trends Pharmacol Sci. 1989; 10(6): 218–220. DOI: 10.1016/0165-6147(89)90263-0. PMID: 2672462.

39. Meggio F., Deana A. D., Ruzzene M., Brunati A. M., Cesaro L., Guerra B., Meyer T., et al. Different susceptibility of protein kinases to staurosporine inhibition: kinetic studies and molecular bases for the resistance of protein kinase CK2. Europ J Biochem. 1995; 234 (1): 317–322. DOI: 10.1111/j.1432-1033.1995.317_c.x. PMID: 8529658.

40. Tee A. R., Proud C. G. Staurosporine inhibits phosphorylation of translational regulators linked to mTOR. Cell Death Differ. 2001; 8 (8): 841–849. DOI: 10.1038/sj.cdd.4400876. PMID: 11526437.

41. Yi Z., Liu J., Shen L., Hu Y. mTOR and autophagy in acute lung injury pathogenesis and therapeutic potential. J Thorac Dis. 2025; 17 (4): 2679–92. DOI: 10.21037/jtd-24-1817. PMID: 40400934.

42. Fu W., Wu G. Targeting mTOR for anti-aging and anti-cancer therapy. Molecules. 2023; 28 (7): 3157. DOI: 10.3390/molecules28073157. PMID: 37049920.


Review

For citations:


Dergilev K.V., Tsokolaeva Z.I., Dolgodvorova A.A., Parfenova E.V. Effect of Rapamycin on Staurosporine-Induced Cardiac Myofibroblast Death. General Reanimatology. 2025;21(6):45-53. (In Russ.) https://doi.org/10.15360/1813-9779-2025-6-2593

Views: 32


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)