Preview

General Reanimatology

Advanced search

Oxygen Transport in Pulmonary Oxygenizing Dysfunction in the Early Periods after Extracorporeal Circulation

https://doi.org/10.15360/1813-9779-2009-6-13

Abstract

Objective: to study the specific features of oxygen transport function in patients with various oxygen delivery changes caused by alveolar opening maneuver (mobilization) performed early after extracorporeal circulation. Subjects and methods. Alveolar opening maneuver was made in the presence of relative arterial hypoxemia under the control of dynamic thora-copulmonary compliance. The maximum airway pressure was as high as 31.1±0.3 cm H2O; the positive end-expiratory pressure was 16.0±0.3 cm H2O. According to the changes in oxygen delivery after alveolar opening maneuver, the investigators retrospectively identified the following groups: 1) (n=14) with a lower and 2) (n=15) higher values. The groups did not differ in age (53.6±2.8 and 56.4±1.8 years), extracorporeal circulation duration (106.4±11.2 and 86.8±4 min), and inotropic support intensity (4.7±0.5 and 4.6±0.6 ^g/kh/min for dopamine and/or dobutamine) (p>0.05). The mode of alveolar opening maneuver and its impact on thoracopulmonary compliance and pulmonary oxygenizing function were identical in the groups (p>0.05). Results. 48.3% of the patients with relative arterial hypoxemia show a linear relationship between the oxygen delivery and consumption indices (r=0.73; p=0.003), and there was a close inverse correlation between the oxygen utilization coefficient and intrapulmonary shunting (r=-0.77; p=0.001). After alveolar opening maneuver, the oxygen delivery index decreased in these cases from 440.7±31.7 to 376.9±20.4 ml/min/m2 (p<0.05). The time course °f changes oxygen delivery influenced mixed venous hemoglobin oxygen saturation (r=-0.71; p=0.005), which was related to lactatemia before (r=0.71; p=0.004) and after (r=0.7; p=0.005) alveolar opening maneuver. Conclusion. After extracorporeal circulation, relative arterial hypoxemia may be concurrent with the signs of oxygen transport system tension in patients with impaired pulmonary oxygenizing function. Moreover, regional blood flow impairments in the peripheral tissues and those in the lung are closely related. After alveolar opening maneuver that improves pulmonary oxygenizing function, oxygen delivery decreases, affecting mixed venous hemoglobin oxygen saturation. The findings give grounds to recommend close monitoring and timely correction during alveolar mobilization in the early period after cardiosurgery. The specific features of oxygen transport and utilization during standard interventions into the heart under extracorporeal circulation call for further in-depth studies. Key words: oxygen transport, oxygen delivery and consumption, alveolar opening maneuver (mobilization), arterial hypoxemia in cardiosurgical patients.

References

1. Suematsu Y., Sato H., Ohtsuka T. et al.

2. Shoemaker W. C., Patil R., Appel P. L., Kram H. B.Hemodynamic and oxygen transport patterns for outcome prediction, therapeutic goals, and clinical algorithm to improve outcome. Chest 1992; 102 (5): 617s—625s.

3. Appel P. L., Shoemaker W. C.Relationship of oxygen consumption and oxygen delivery in surgical patients with ARDS. Chest 1992; 102 (3): 906—911.

4. Leach R. M., Treacher D. F.The pulmonary physician in critical care.2: Oxygen delivery and consumption in the critically ill. Thorax 2002; 57 (2): 170—177.

5. Dyhr T., Laursen N., Larsson A.Effects of lung recruitment maneuver and positive end-expiratory pressure on lung volume, respiratory mechanics and alveolar gas mixing in patients ventilated after cardiac surgery. Acta Anaesthesiol. Scand. 2002; 46 (6): 717—72

6. Reis Miranda D., Commers D., Struijs A. et al.The open lung concept: effects on right ventricular afterload after cardiac surgery. Br. J. Anaesth. 2004; 93 (3): 327—332.

7. Ерёменко А. А, Левиков Д. И, Егоров В. М. и соавт.Применение манёвра открытия лёгких у больных с острой дыхательной недостаточностью после кардиохирургических операций. Общая реаниматология 2006; II (1): 23—28.

8. Celebi S., Koner O., Menda F. et al.The pulmonary and hemodynamic effects of two different recruitment maneuvers after cardiac surgery. Anesth. Analg. 2007; 104 (2): 384—389.

9. Козлов И. А., Романов А. А.Манёвр открытия («мобилизация») альвеол при интраоперационном нарушении оксигенирующей функции лёгких у кардиохирургических больных. Анестезиология и реаниматология 2007; 2: 42—46.

10. Malbouisson L. M. S., Brito M., Carmona M. J. C., Auler J. O. C.Hemodynamic impact of alveolar recruitment maneuver in patients evolving with cardiogenic shock in the immediate postoperative period of myocardial revascularization. Rev. Bras. Anestesiol. 2008; 58 (2): 112—123.

11. Зорина Ю. Г., Мороз В. В., Голубев А. М., Никифоров Ю. В.Оценка эффективности «открытия альвеол» у кардиохирургических больных с низкой фракцией выброса левого желудочка. Общая реаниматология 2009; V (3): 20—23.

12. Carlile P. V., Gray B. A.Effect of opposite changes in cardiac output and arterial PO2in the relationship between mixed venous PO2and oxygen transport. Am. Rev. Respir. Dis. 1989; 140 (4): 891—896.

13. Nielsen J., Nygard E., Kjaergaard J. et al.Hemodynamic effect of sustained pulmonary hyperinflation in patients after cardiac surgery: open vs. closed chest. Acta Anaesthesiol. Scand. 2007; 51 (1): 74—81.

14. Козлов И. А., Романов А. А., Дзыбинская Е. В.Центральная гемодинамика и транспорт кислорода при «мобилизации альвеол» в ранние сроки после искусственного кровообращения. Общая реаниматология 2009; V (5): 20—25.

15. Науменко С. Е.Кислородтранспортная функция крови у больных пожилого при операциях в условиях искусственного кровообращения. Росс. физиологич. журн. им. И. М. Сеченова 2008; 94 (1): 53—61.

16. Остапченко Д. А., Шишкина Е. В., Мороз В. В.Транспорт и потребление кислорода у больных в критических состояниях. Анестезиология и реаниматология 2000; 2: 68—72.

17. Leach R. M., Treacher D. F.Oxygen transport: the relation between oxygen delivery and consumption. Thorax 1992; 47 (11): 971—978.

18. Leach R. M., Treacher D. F.Oxygen transport-1. Basic principles. BMJ 1998; 317 (7): 1302—1306.

19. Leach R. M., Treacher D. F.Oxygen transport-2. Tissue hypoxia. BMJ 1998; 317 (14): 1370—1373.

20. Николаенко Э. М.Критический уровень транспорта О2 в раннем периоде после протезирования клапанов сердца. Анестезиология и реаниматология 1986; 1: 26—30.

21. Jakob S.Oxygen transport on the global and regional level in the critically ill. EuroAnesthesia 2006 (Madrid, Spain, 3—6 June 2006): 151—152.

22. Shoemaker W. C., Appel P. L., Kram H. B.Role of oxygen debt in the development of organ failure sepsis, and death in high-risk surgical patients. Chest 1992; 102 (1): 208—215.

23. Lorente J. A., Renes E., Gomez-Aguinaga M. A. et al.Oxygen delivery-dependent oxygen consumption in acute respiratory failure. Crit. Care Med. 1991; 19 (6): 770—775.

24. Mohsenifar Z., Goldbach P., Tashkin D. P., Campisi D. J.Relationship between O2delivery and O2consumption in the adult respiratory distress syndrome. Chest 1983; 84 (3): 267—271.

25. Spec-Marn A., Tos L., Kremzar B. et al.Oxygen delivery-consumption relationship in adult respiratory distress syndrome patients: the effects of sepsis. J. Crit. Care 1993; 8 (1): 43—50.

26. WegJ. G.Oxygen transport in adult respiratory distress syndrome and other acute circulatory problems: relationship of oxygen delivery and oxygen consumption. Crit. Care Med. 1991; 19 (5): 650—657.

27. ChristensonJ. T., AeberhardJ. M., BadelP. et al.Adult respiratory distress syndrome after cardiac surgery. Cardiovasc. Surg. 1996; 4 (1): 15—21.

28. Karimova A., Pinsky D. J.The endothelial response to oxygen deprivation: biology and clinical implications. Intensive Care Med. 2001; 27 (1): 19—31.

29. Czerny M., Baumer H., KiloJ. et al.Inflammatory response and myocardial injury following coronary artery bypass grafting with or without car-diopulmonary bypass. Eur. J. Cardiothorac. Surg. 2000; 17 (6): 737—742.

30. Hill G. E.Cardiopulmonary bypass-induced inflammation: is it important? J. Cardiothorac. Vasc. Anesth. 1998; 12 (2 Suppl 1): 21—25.

31. Giomarelli P., Scolletta S., Borrelli E., Biagioli B.Myocardial and lung injury after cardiopulmonary bypass: role of interleukin (IL)-10. Ann. Thorac. Surg. 2003; 76 (1): 117—123.

32. Дворецкий Д. П., Ткаченко Б. И.Гемодинамика в легких. М.: Медицина; 1987. 288.

33. Leach R. M., Treacher D. F.Clinical aspects of hypoxic pulmonary vaso-constriction. Exp. Physiol. 1995; 80 (5): 865—875.

34. Magnusson L., Zemgulis V., Wicky S. et al.Atelectasis is major cause of hypoxaemia and shunt after cardiopulmonary bypass. Anesthesiology 1997; 87 (5): 1153—1163.

35. Lachmann B.Open up the lung and keep the lung open. Intensive Care Med. 1992; 18 (6): 319—321.

36. Duggan M., Kavanagh B. P.Pulmonary atelectasis. Anesthesiology 2005; 102 (4): 838—854.

37. Kern J. W., Shoemaker W. C.Meta-analysis of hemodynamic optimization in high-risk patients. Crit. Care Med. 2002; 30 (8): 1686—1692.


Review

For citations:


Kozlov I.A., Romanov A.A. Oxygen Transport in Pulmonary Oxygenizing Dysfunction in the Early Periods after Extracorporeal Circulation . General Reanimatology. 2009;5(6):13. (In Russ.) https://doi.org/10.15360/1813-9779-2009-6-13

Views: 1544


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)