Preview

General Reanimatology

Advanced search

Prevention of Postischemic Neurological Deficit by Modulating the Cerebral Cell Expression of ADP-Ribosyl Cyclase (Experimental Study)

https://doi.org/10.15360/1813-9779-2007-6-109-113

Abstract

Objective: to study the mechanism that is responsible for impaired neuronal cell electroexcitability and viability, which is associated with modification of ADP-ribosyl cyclase in cerebral ischemic lesion, as well as the possibilities of pathogenet-ically correcting these disorders.

Materials and methods. Acute cerebral ischemia was simulated in vivo on noninbred albino male rats, by ligating the right common carotid artery under general anesthesia. y-Interferon was intraperitoneally administered to the mammal in a dose of 5000 IU/kg body weight once daily for 3 days until unilateral extravasal occlusion of the common carotid artery occurred. The activity of ADP-ribosyl cyclase was evaluated by the fluorometric technique. CD38 expression in the brain cells was immunohistohemically detected. The severity of neurological symptoms was evaluated using the international NSS scale for laboratory animals. Cognitive dysfunction was recorded employing the standard test — the Morris water maze. The validity of differences was assessed by Student’s t-test and T-test, by applying STATISTICA version 6.0 (StatSoft-Russia, 1999) and BIOSTATISTICA programs.

Results. Progressive neurological and cognitive deficit-induced changes occurred in the activity and expression of ADP-ribosyl cyclase/CD38 in the neuronal and glial cells in the course of brain ischemia. Neuroprotection and prevention of postischemic cognitive dysfunction were achieved by the use of y-interferon as a modifier of the brain cell expression of CD38/ADP-ribosyl cyclase.

 

About the Authors

A. A. Fursov
Krasnoyarsk State Medical Academy, Federal Agency for Health Care and Social Development, Krasnoyarsk


A. B. Salmina
Krasnoyarsk State Medical Academy, Federal Agency for Health Care and Social Development, Krasnoyarsk


S. V. Mikhutkina
Krasnoyarsk State Medical Academy, Federal Agency for Health Care and Social Development, Krasnoyarsk


L. D. Zykova
Krasnoyarsk State Medical Academy, Federal Agency for Health Care and Social Development, Krasnoyarsk


N. A., Malinovskaya
Krasnoyarsk State Medical Academy, Federal Agency for Health Care and Social Development, Krasnoyarsk


A. V. Morgun
Krasnoyarsk State Medical Academy, Federal Agency for Health Care and Social Development, Krasnoyarsk


D. I. Laletin
Krasnoyarsk State Medical Academy, Federal Agency for Health Care and Social Development, Krasnoyarsk


M. A. Fursov
Krasnoyarsk State Medical Academy, Federal Agency for Health Care and Social Development, Krasnoyarsk


G. V. Yudin
Krasnoyarsk State Medical Academy, Federal Agency for Health Care and Social Development, Krasnoyarsk


N. A. Shnayder
Krasnoyarsk State Medical Academy, Federal Agency for Health Care and Social Development, Krasnoyarsk


S. V. Shakhmaeva
A. A. Vishnevsky Central Clinical Hospital, Krasnogorsk


References

1. Li J. -H. Compounds, methods and pharmaceutical compositions for treating cellular damage, such as neural or cardiovascular tissue damage. US patent 2001; 6 (291): 425.

2. Ижбульдин Р. И., Плечев В. В., Закиров И. Р., Фархутдилов Р. Р. Способ защиты головного мозга в реконструктивной хирургии сонных артерий. 2004. патент РФ 2279878, МПК A61K 31/455, A61P 9/10, 20.07.2006

3. Simpkins J. W., Gordon K. D., Leonard R. J. Methods of prevention and treatment of ischemic damage. US patent 6,339,078 (2002).

4. Gee K. W. Use of peripheral-type benzodiazpine sites for treatment of CNS trauma or disease, US patent 5,550,124 (1996).

5. Lubitz V., Kenneth A., Jacobson D. K. Method of treating ischemic, hypoxic and anoxic brain damage. US patent 6,316,423 (2001).

6. Прайс Д. Трансплантация гемопоэтических клеток. 2003, патент РФ 2216336, МПК A61K 35/48, A61P 25/00, 20.11.2003

7. Ran Z. -H., Rayet B., Rommelaere J. et al. Parvovirus H1-induced cell death: influence of intracellular NAD consumption on the regulation of necrosis and apoptosis. Virus Res. 1999; (65): 161—174.

8. Berger F., Lau C., Dahlmann M. et al. Subcellular compartmentation and different catalytic properties of three human nicotinamide mononucleotide adenylyltransferase isoforms. J. Biol. Chem. 2005; 280 (43): 36334—36341.

9. Magni G., Amici A., Emanuelli M. et al. Enzymology of NAD+ homeostasis in man. Cell. Mol. Life Sci. 2004; (61): 19—34.

10. Aksoy P., White T., Thompson M. et al. Regulation of intracellular levels of NAD: a novel role for CD38. Biochem. Biophys. Res. Comm. 2006; (10): 1016; 2006; (05): 042.

11. Berthelier V., Tixier J. -M., Muller-Steffner H. et al. Human CD38 is an authentic NAD(P)+ glycohydrolase. Biochem. J.1998; 330: 1383—1390.

12. Ceni C., Muller-Steffner H., Lund F. et al. Evidence for a intracellular ADP-ribosyl cyclase/NAD glycohydrolase in brain from CD38-deficient mice. J.Biol.Chem. 2003; 278 (42): 40670—40678.

13. De Flora A., Franco L., Guida L. et al. Ectocellular CD38-catalyzed synthesis and intracellular Ca 2+ - mobilizing activity of cyclic ADP-ribose. Cell Biochem. Biophys. 1998; 28 (1): 45—62.

14. Guida L., Bruzzone S., Sturla L. et al. Equilibrative and concentrative nucleoside transporters mediate influx of extracellular cyclic ADP-ribose into 3T3 murine fibroblasts. J. Biol. Chem. 2002; 277 (49): 47097—47105.

15. Hashii M., Munabe Y., Higashida H. cADP-ribose potentiates cytosolic Ca 2+ elevation and Ca 2+ entry via L-type voltage-activated Ca 2+ channels in NG108-15 neuronal cells. Biochem. J. 2000; 345: 207—215.

16. Higashida H., Hashii M., Yokoyama S. et al. Cyclic ADP-ribose as a second messenger revisited from a new aspect of signal transduction from receptors to ADP-ribosyl cyclase. Phramacol. & Therapeutics 2001; 90: 283—296.

17. Ceni C., Pochon N., Brun V. et al. CD38-dependent ADP-ribosyl cyclase activity in developing and adult mouse brain. Biochem. J. 2003; 370: 175—183.

18. Ceni C., Pochon N., Villaz M. et al. The CD38-independent ADP-ribosyl cyclase from mouse brain synaptosomes: a comparative study of neonate and adult brain. Biochem. J. 2006; 395: 417—426.

19. Yamada M., Mizugushi M., Otsuka N. et al. Ultrastructural localization of CD38 immunoreactivity in rat brain. Brain Res. 1997; 756 (1—2): 52—60.

20. Kunz S., Rojek J. M., Roberts A. J. et al. Altered central nervous system gene expression caused by congenitally aquired persistent infection with lymphocytic choriomeningitis virus. J. Virology 2006; 80 (18): 9082—9092.

21. Maier C. M., Yu F., Nishi T. et al. Interferon-beta fails to protect in a model of transient focal stroke. Stroke 2006; 37: 1116.

22. Yilmaz G., Arumugam T. V., Stokes K. Y. et al. Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation 2006; 113: 2105— 2112.

23. Hajilambreva G., Mix E., Rolfs A. et al. Neuromodulation by a cytokine: interferon-beta differentially augments neocortical neuronal activity and excitability. J. Neurophysiol. 2005; 93: 843—852.

24. Koh J. -Y., Wie M. B., Gwag B. J. et al. Staurosporine-induced neuronal apoptosis. Exp. Neurol. 1995; 135: 153—159.

25. Bauvois B., Durant L., Laboureau J. et al. Upregulation of CD38 gene expression in leukemic B cells by interferon types I and II. J. Interferon Cytokine Res. 1999; 19: 1059—1066.


Review

For citations:


Fursov A.A., Salmina A.B., Mikhutkina S.V., Zykova L.D., Malinovskaya N.A., Morgun A.V., Laletin D.I., Fursov M.A., Yudin G.V., Shnayder N.A., Shakhmaeva S.V. Prevention of Postischemic Neurological Deficit by Modulating the Cerebral Cell Expression of ADP-Ribosyl Cyclase (Experimental Study). General Reanimatology. 2007;3(6):109-113. (In Russ.) https://doi.org/10.15360/1813-9779-2007-6-109-113

Views: 1057


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)