Structural and Functional Rearrangement of Great Arterial Vessels in the Late Postresuscitative Period
https://doi.org/10.15360/1813-9779-2007-2-18-23
Abstract
Objective: to study the specific features of remodeling of the aorta, carotid, and femoral artery in the late postresuscitative period.
Materials and methods. Experiments were carried out on non-inbred albino rats when clinical death was stimulated by the method of V. G. Korpachev due to 10-minute cardiovascular fascicle ligation. Before clinical death and 60 days after resuscitation, blood pressure, vascular tissue malonic dialdehyde levels, and plasma biochemiluminescence parameters were recorded and great vascular tissue microscopic and ultramicroscopic studies were conducted.
Results. On day 60 following resuscitation, a unitary connective tissue carcass was shown to form in the great vascular intima and media via chaotic synthesis of heretodirection-al fibers. This appeared as elevated levels of collagenous fibers in the intima and media as shown by light microscopy. The aortic, carotid, and femoral arterial media displayed a large number of secreting smooth muscle cells and elevated levels of collagenous fibers, which was an active vascular wall remodeling process. Enhanced free radical processes during reperfusion both in the whole organism and vascular wall tissue were one of the triggers of remodeling processes after ischemia. Impaired vascular tone regulation caused by the development of vascular wall remodeling by the connective tissue vegetation growth type contributed to the development of a hypertensive response in the late period.
Conclusion. The late postresuscitative period was marked by increased connective tissue in the media of great vessels, by imperfect recovery of the morphofunc-tional status of the endothelial lining, which was likely to be a cause of increased vascular stiffness and elevated blood pressure in rats 2 months after resuscitation.
About the Authors
I. V. MukhinaR. S. Kulikov
Ye. I. Yakovleva
N. N. Andreyeva
N. N. Prodanets
L. B. Snopova
M. L. Bugrova
References
1. Биленко М. В. Ишемические и реперфузионные повреждения органов. М: Медицина; 1989.
2. Escolar E. et al. Relation of intimal hyperplasia thickness to stent size in paclitaxel-coated stents. Am. J. Cardiol. 2004; 94 (2): 196—198.
3. Беленков Ю. Н., Мареев В. Ю., Агеев Ф. Т. Эндотелиальная дисфункция при сердечной недостаточности: возможности терапии ингибиторами ангиотензинпревращающего фермента. Кардиология 2001; 5: 100—104.
4. Kervancioglu S., Davutoglu V., Ozkur A. et al. Carotid and brachial intima-media thickness, arterial diameter and resistivity indices in aortic regurgitation. Acta Radiol. 2004; 45 (8): 815—818.
5. Beetsch J. W., Park T. S., Dugan L. L. et al. Xanthine oxidase-derived superoxide causes reoxygenation injury of ischemic cerebral endothelial cells. Brain Res. 1998; 786 (1—2): 89—95.
6. Laude K., Richard V., Thuillez C. Coronary endothelial cells: a target of ischemia reperfusion and its treatment? Arch. Mal. Coeur Vaiss. 2004; 97(3): 250—254.
7. Корпачев В. Г., Лысенков С. П., Тель Л. З. Моделирование клинической смерти и постреанимационной болезни у крыс. Патол. физиология и эксперим. терапия 1982; 3: 78—80.
8. Hodis H. N., Mark W. J., Za Bree Z. et al. The role of carotid arterial intima-media thickness in predicting clinical coronary events. Ann. Intern. Med. 1998; 128: 262—269.
9. Bots M. L., Grobbee D. E., Hofman A., Witteman J. C. Common carotid intima-media thickness and risk of acute myocardial infarction: the role of lumen diameter. Stroke 2005; 36 (4): 762—767.
10. Traub O., Berk B. Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler. Thromb. Vasc. Biol. 1998; 18 (5): 677—685.
11. Girerd X. et al. Remodeling of the radial artery in response to a chronic increase in shear stress. Hypertension 1996; 27: 799—803.
12. Шляхто Е. В., Моисеева О. М. Клеточные аспекты ремоделирования сосудов при артериальной гипертензии. Артериальная гипертензия 2002; 8 (2): 45—48.
13. Taddei S. et al. The role of endothelium in human hypertension. Curr. Opin. Nephrol. Hypertension 1998; 7 (2): 203—209.
14. Sutcliffe M. S., Davidson J. M. Increased tropoelastin production by porcine aorta smooth muscle cells stretched during in vitro culture. Collagen Relat. Res. 1998; 8: 538.
15. Caleb B. L. et. al. Isolation of vascular smooth muscle cell cultures with altered responsiveness to the antiproliferative effect of heparin. J. Cell. Physiol. 1996; 167 (2): 185—195.
16. Inauen W. et al. Hypoxia/reoxygenation increases the permeability of endothelial cell monolayers: role of oxygen radicals. Free Radic. Biol. Med. 1990; 9 (3): 219—223.
17. Risler N. R., Cruzado M. C., Miatello R. M. Vascular remodeling in experimental hypertension. Sci. World J. 2005; 12 (5): 959—971.
Review
For citations:
Mukhina I.V., Kulikov R.S., Yakovleva Ye.I., Andreyeva N.N., Prodanets N.N., Snopova L.B., Bugrova M.L. Structural and Functional Rearrangement of Great Arterial Vessels in the Late Postresuscitative Period. General Reanimatology. 2007;3(2):18-23. (In Russ.) https://doi.org/10.15360/1813-9779-2007-2-18-23